Browse > Article
http://dx.doi.org/10.5851/kosfa.2015.35.1.1

Genome of Bifidobacteria and Carbohydrate Metabolism  

Bondue, Pauline (Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liege)
Delcenserie, Veronique (Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liege)
Publication Information
Food Science of Animal Resources / v.35, no.1, 2015 , pp. 1-9 More about this Journal
Abstract
In recent years, the knowledge about bifidobacteria has considerably evolved thanks to recent progress in molecular biology. The analysis of the whole genome sequences of 48 taxa of bifidobacteria offers new perspectives for their classification, especially to set up limit between two species. Indeed, several species are presenting a high homology and should be reclassified. On the other hand, some subspecies are presenting a low homology and should therefore be reclassified into different species. In addition, a better knowledge of the genome of bifidobacteria allows a better understanding of the mechanisms involved in complex carbohydrate metabolism. The genome of some species of bifidobacteria from human but also from animal origin demonstrates high presence in genes involved in the metabolism of complex oligosaccharides. Those species should be further tested to confirm their potential to metabolize complex oligosaccharides in vitro and in vivo.
Keywords
bifidobacteria; genomic; complex oligosaccharides; inuline; galacto oligosaccharides; human milk oligosaccharide; bovine milk oligosaccharide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sela, D. A. (2011) Bifidobacterial utilization of human milk oligosaccharides. Int. J. Food Microbiol. 149, 58-64.   DOI   ScienceOn
2 Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J., Trüper, H. G., Vauterin, L., Ward, A. C., and Whitman, W. B. (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043-1047.   DOI   ScienceOn
3 Stiverson, J., Williams, T., Chen, J., Adams, S., Hustead, D., Price, P., Guerrieri, J., Deacon, J., and Yu Z. (2014) A comparative evaluation of prebiotic oligosaccharides using in vitro cultures of infant fecal microbiome. Appl. Environ. Microbiol. 80, 7388-7397.   DOI   ScienceOn
4 Tanner, S. A., Chassard, C., Zihler Berner, A., and Lacroix C. (2014) Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog. 6, 44.   DOI
5 Lugli, G. A., Milani, C., Turroni, F., Duranti, S., Ferrario, C., Viappiani, A., Mancabelli, L., Mangifesta, M., Taminiau, B., Delcenserie, V., van Sinderen, D., and Ventura M. (2014) Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl. Environ. Microbiol. 80, 6383-6394.   DOI   ScienceOn
6 Mehra, R., Barile, D., Marotta, M., Lebrilla, C. B., Chu, C., and German, J. B. (2014) Novel high-molecular weight fucosylated milk oligosaccharides identified in dairy streams. PLoS One. 9, e96040.   DOI   ScienceOn
7 Meli, F., Puccio, G., Cajozzo, C., Ricottone, G., Pecquet, S., Sprenger, N., and Steenhout, P. (2014) Growth and safety evaluation of infant formulae containing oligosaccharides derived from bovine milk: a randomized, double-blind, noninferiority trial. BMC Pediatr. 14, 306.   DOI   ScienceOn
8 Pacheco, A. R., Barile, D., Underwood, M. A., and Mills, D. A. (2014) The impact of the milk glycobiome on the neonate gut microbiota. Annu. Rev. Anim. Biosci. Epub ahead of print DOI:10.1146
9 Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S., and Matteuzzi, D. (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 71, 6150-6158.   DOI   ScienceOn
10 Scholtens, P. A., Goossens, D. A., and Staiano, A. (2014) Stool characteristics of infants receiving short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides: a review. World J. Gastroenterol. 20, 13446-13452.   DOI   ScienceOn
11 Han, K. H., Kobayashi, Y., Nakamura, Y., Shimada, K., Aritsuka, T., Ohba, K., Morita, T., and Fukushima, M. J. (2014) Comparison of the effects of longer chain inulins with different degrees of polymerization on colonic fermentation in a mixed culture of Swine fecal bacteria. Nutr. Sci. Vitaminol. 60, 206-212.   DOI
12 Di Gioia, D., Aloisio, I., Mazzola, G., and Biavati, B. (2014) Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl. Microbiol. Biotechnol. 98, 563-577.   DOI   ScienceOn
13 Garrido, D., Ruiz-Moyano, S., Jimenez-Espinoza, R., Eom, H. J., Block, D. E., and Mills, D. A. (2013) Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 33, 262-270.   DOI   ScienceOn
14 German, J. B., Freeman, S. L., Lebrilla, C. B., and Mills, D. A. (2008) Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr. Workshop Ser. Pediatr. Program. 62, 205-218.   DOI   ScienceOn
15 Cardelle-Cobas, A., Corzo, N., Olano, A., Pelaez, C., Requena, T., and Avila, M. (2011) Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Int. J. Food Microbiol. 149, 81-87.   DOI   ScienceOn
16 Kelly, V., Davis, S., Berry, S., Melis, J., Spelman, R., Snell, R., Lehnert, K., and Palmer, D. (2013) Rapid, quantitative analysis of 3'- and 6'-sialyllactose in milk by flow-injection analysis-mass spectrometry: screening of milks for naturally elevated sialyllactose concentration. J Dairy Sci. 12, 7684-7691.
17 Konstantinidis, K. T. and Tiedje, J. M. (2005) Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U S A. 102, 2567-2572.   DOI   ScienceOn
18 Lee, J. H. and O'Sullivan, D. J. (2010) Genomic insights into bifidobacteria. Microbiol. Mol. Biol. Rev. 74, 378-416.   DOI   ScienceOn
19 Chichlowski, M., German, J. B., Lebrilla, C. B., and Mills, D. A. (2011) The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Ann. Rev. Food Sci. Technol. 2, 331-351.   DOI   ScienceOn
20 Delcenserie, V., Gavini, F., China, B., and Daube, G. (2011) Bifidobacterium pseudolongum are efficient indicators of animal fecal contamination in raw milk cheese industry. BMC Microbiol. 11, 178.   DOI
21 Delcenserie, V., Taminiau, B., Gavini, F., de Schaetzen, M. A., Cleenwerck, I., Theves, M., Mahieu, M., and Daube, G. (2013) Detection and characterization of Bifidobacterium crudilactis and B. mongoliense able to grow during the manufacturing process of French raw milk cheeses. BMC Microbiol. 13, 239.   DOI   ScienceOn
22 Tao, N., DePeters, E. J., Freeman, S., German, J. B., Grimm, R., and Lebrilla, C. B. (2008) Bovine milk glycome. J. Dairy Sci. 91, 3768-3778.   DOI   ScienceOn
23 Van der Meulen, R., Adriany, T., Verbrugghe, K., and De Vuyst L. (2006) Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl. Environ. Microbiol. 72, 5204-5210.   DOI   ScienceOn
24 Zivkovic, A. M. and Barile, D. (2011) Bovine milk as a source of functional oligosaccharides for improving human health. Adv. Nutr. 2, 284-289.   DOI
25 Zoetendal, E. G., Rajilic-Stojanovic, M., and de Vos, W. M. (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605-1615.   DOI   ScienceOn
26 Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M., and Finlay, B. (2014) The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427.
27 Delétoile, A., Passet, V., Aires, J., Chambaud, I., Butel, M. J., Smokvina, T., and Brisse, S. (2010) Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res. Microbiol. 161, 82-90.   DOI   ScienceOn
28 De Vuyst, L. and Leroy, F. (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production. Int. J. Food Microbiol. 149, 73-80.   DOI   ScienceOn
29 Adamberg, S., Sumeri, I., Uusna, R., Ambalam, P., Kondepudi, K. K., Adamberg, K., Wadstrom, T., and Ljungh, A. (2014) Survival and synergistic growth of mixed cultures of bifidobacteria and lactobacilli combined with prebiotic oligosaccharides in a gastrointestinal tract simulator. Microb. Ecol. Health Dis. 25, doi: 10.3402.
30 Barile, D. and Rastall, R. A. (2013) Human milk and related oligosaccharides as prebiotics. Curr. Opin. Biotechnol. 24, 214-219.   DOI   ScienceOn
31 Bosscher, D., Van Loo, J., and Franck, A. (2006) Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr. Res. Rev. 19, 216-226.   DOI   ScienceOn
32 Bottacini, F., Ventura, M., van Sinderen, D., and O'Connell Motherway, M. (2014) Diversity, ecology and intestinal function of bifidobacteria. Microb. Cell. Fact. 13, S4.   DOI   ScienceOn
33 Urashima, T., Taufik, E., Fukuda, K., and Asakuma, S. (2013) Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci. Biotechnol. Biochem. 77, 455-466.   DOI   ScienceOn
34 Turroni, F., van Sinderen, D., and Ventura, M. (2011) Genomics and ecological overview of the genus Bifidobacterium. Int. J. Food Microbiol. 149, 37-44.   DOI   ScienceOn
35 Turroni, F., Peano, C., Pass, D. A., Foroni, E., Severgnini, M., Claesson, M. J., Kerr, C., Hourihane, J., Murray, D., Fuligni, F., Gueimonde, M., Margolles, A., De Bellis, G., O'Toole, P. W., van Sinderen, D., Marchesi, J. R., and Ventura, M. (2012) Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 7, e36957.   DOI
36 Turroni, F., Duranti, S., Bottacini, F., Guglielmetti, S., Van Sinderen, D., and Ventura, M. (2014) Bifidobacterium bifidum as an example of a specialized human gut commensal. Front. Microbiol. 5, 437.
37 Wu, S., Grimm, R., German, J. B., and Lebrilla, C. B. (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 10, 856-868.   DOI   ScienceOn
38 Smilowitz, J. T., Lebrilla, C. B., Mills, D. A., German, J. B., and Freeman, S. L. (2014) Breast milk oligosaccharides: structure-function relationships in the neonate. Ann. Rev. Nutr. 34, 143-169.   DOI   ScienceOn
39 Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D. S., Lebrilla, C. B., German, J. B., Price, N. P., Richardson, P. M., and Mills, D. A. (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U S A. 105, 18964-189649.   DOI   ScienceOn
40 Sela, D. A. and Mills D. A. (2010) Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298-307.   DOI   ScienceOn
41 De Vuyst, L., Moens, F., Selak, M., Rivière, A., and Leroy F. (2013) Summer Meeting 2013: growth and physiology of bifidobacteria. J. Appl. Microbiol. 116, 477-491.
42 Ventura, M., Canchaya, C., Del Casale, A., Dellaglio, F., Neviani, E., Fitzgerald, G. F., and van Sinderen D. (2006) Analysis of bifidobacterial evolution using a multilocus approach. Int. J. Syst. Evol. Microbiol. 56, 2783-2792.   DOI   ScienceOn
43 Milani, C., Lugli, G.A., Duranti, S., Turroni, F., Bottacini, F., Mangifesta, M., Sanchez, B., Viappiani, A., Mancabelli, L., Taminiau, B., Delcenserie, V., Barrangou, R., Margolles, A., van Sinderen, D., and Ventura, M. (2014) Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 80, 6290-6302.   DOI   ScienceOn