DOI QR코드

DOI QR Code

The Role of Two Human Milk Oligosaccharides, 2'-Fucosyllactose and Lacto-N-Neotetraose, in Infant Nutrition

  • Received : 2018.11.27
  • Accepted : 2019.02.12
  • Published : 2019.07.15

Abstract

Human breast milk contains numerous biomolecules. Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk, after lactose and lipids. Amongst the synthetized HMOs, 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) are widely studied and are considered safe for infant nutrition. Several studies have reported the health benefits of HMOs, which include modulation of the intestinal microbiota, anti-adhesive effect against pathogens, modulation of the intestinal epithelial cell response, and development of the immune system. The amount and diversity of HMOs are determined by the genetic background of the mothers (HMO secretors or non-secretors). The non-secretor mothers secrete lower HMOs than secretor mothers. The breastfed infants of secretor mothers gain more health benefit than those of non-secretor mothers. In conclusion, supplementation of infant formula with 2'-FL and LNnT is a promising innovation for infant nutrition.

Keywords

References

  1. World Health Organization. Maternal, newborn, child and adolescent health [Internet]. Geneva: World Health Organization; [cited 2018 Oct 31]. Available from: http://www.who.int/maternal_child_adolescent/topics/child/nutrition/breastfeeding/en/.
  2. ESPGHAN Committee on Nutrition, Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, et al. Breast-feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 2009;49:112-25. https://doi.org/10.1097/MPG.0b013e31819f1e05
  3. Lonnerdal B, Hernell O. An opinion on "staging" of infant formula- a developmental perspective on infant feeding. J Pediatr Gastroenterol Nutr 2016;62:9-21. https://doi.org/10.1097/MPG.0000000000000806
  4. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012;22:1147-62. https://doi.org/10.1093/glycob/cws074
  5. Xu G, Davis JC, Goonatilleke E, Smilowitz JT, German JB, Lebrilla CB. Absolute quantitation of human milk oligosaccharides reveals phenotypic variations during lactation. J Nutr 2017;147:117-24. https://doi.org/10.3945/jn.116.238279
  6. Chaturvedi P, Warren CD, Altaye M, Morrow AL, Ruiz-Palacios G, Pickering LK, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 2001;11:365-72. https://doi.org/10.1093/glycob/11.5.365
  7. Thurl S, Munzert M, Henker J, Boehm G, Muller-Werner B, Jelinek J, et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr 2010;104:1261-71. https://doi.org/10.1017/S0007114510002072
  8. Kunz C, Kuntz S, Rudloff S. Bioactivity of human milk oligosaccharides. In: Moreno FM, Sanz ML, eds. Food Oligosaccharides: Production, Analysis and Bioactivity. 1st ed. Chichester: John Wiley & Sons, Ltd; 2014: 5-20.
  9. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4653-8. https://doi.org/10.1073/pnas.1000083107
  10. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structurefunction relationships in the neonate. Annu Rev Nutr 2014;34:143-69. https://doi.org/10.1146/annurev-nutr-071813-105721
  11. Sprenger N, Lee LY, De Castro CA, Steenhout P, Thakkar SK. Longitudinal change of selected human milk oligosaccharides and association to infants' growth, an observatory, single center, longitudinal cohort study. PLoS One 2017;12:e0171814. https://doi.org/10.1371/journal.pone.0171814
  12. Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999;28:19-25. https://doi.org/10.1097/00005176-199901000-00007
  13. Renz-Polster H, David MR, Buist AS, Vollmer WM, O'Connor EA, Frazier EA, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy 2005;35:1466-72. https://doi.org/10.1111/j.1365-2222.2005.02356.x
  14. Goldani HA, Bettiol H, Barbieri MA, Silva AA, Agranonik M, Morais MB, et al. Cesarean delivery is associated with an increased risk of obesity in adulthood in a Brazilian birth cohort study. Am J Clin Nutr 2011;93:1344-7. https://doi.org/10.3945/ajcn.110.010033
  15. Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 2008;51:726-35. https://doi.org/10.1007/s00125-008-0941-z
  16. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000;30:61-7. https://doi.org/10.1097/00005176-200001000-00019
  17. Yasmin F, Tun HM, Konya TB, Guttman DS, Chari RS, Field CJ, et al. Caesarean section, formula feeding, and infant antibiotic exposure: separate and combined impacts on gut microbial changes in later infancy. Front Pediatr 2017;5:200. https://doi.org/10.3389/fped.2017.00200
  18. Mikkelsen KH, Knop FK, Vilsboll T, Frost M, Hallas J, Pottegard A. Use of antibiotics in childhood and risk of type 1 diabetes: a population-based case-control study. Diabet Med 2017;34:272-7. https://doi.org/10.1111/dme.13262
  19. Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes 2014;38:1290-8. https://doi.org/10.1038/ijo.2014.119
  20. Wu P, Feldman AS, Rosas-Salazar C, James K, Escobar G, Gebretsadik T, et al. Relative importance and additive effects of maternal and infant risk factors on childhood asthma. PLoS One 2016;11:e0151705. https://doi.org/10.1371/journal.pone.0151705
  21. Ilic K, Jakovljevic E, Skodric-Trifunovic V. Social-economic factors and irrational antibiotic use as reasons for antibiotic resistance of bacteria causing common childhood infections in primary healthcare. Eur J Pediatr 2012;171:767-77. https://doi.org/10.1007/s00431-011-1592-5
  22. Hviid A, Svanstrom H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 2011;60:49-54. https://doi.org/10.1136/gut.2010.219683
  23. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 2012;130:e794-803. https://doi.org/10.1542/peds.2011-3886
  24. Francino MP. Antibiotics and human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 2016;6:1543. https://doi.org/10.3389/fmicb.2015.01543
  25. Mulder B, Schuiling-Veninga CC, Bos HJ, De Vries TW, Jick SS, Hak E. Prenatal exposure to acidsuppressive drugs and the risk of allergic diseases in the offspring: a cohort study. Clin Exp Allergy 2014;44:261-9. https://doi.org/10.1111/cea.12227
  26. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015;3:13. https://doi.org/10.1186/s40168-015-0071-z
  27. Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 2004;145:297-303. https://doi.org/10.1016/j.jpeds.2004.04.054
  28. Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev 2015;91:619-22. https://doi.org/10.1016/j.earlhumdev.2015.09.001
  29. Salminen S. Regulatory aspect of human milk oligosaccharides. Nestle Nutr Inst Workshop Ser 2017;88:161-70. https://doi.org/10.1159/000455400
  30. Hoeflinger JL, Davis SR, Chow J, Miller MJ. In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth. J Agric Food Chem 2015;63:3295-302. https://doi.org/10.1021/jf505721p
  31. Bode L, Kuhn L, Kim HY, Hsiao L, Nissan C, Sinkala M, et al. Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am J Clin Nutr 2012;96:831-9. https://doi.org/10.3945/ajcn.112.039503
  32. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, et al. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 2007;55:8914-9. https://doi.org/10.1021/jf0710480
  33. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 2010;58:5334-40. https://doi.org/10.1021/jf9044205
  34. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011;286:34583-92. https://doi.org/10.1074/jbc.M111.248138
  35. Bunesova V, Lacroix C, Schwab C. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol 2016;16:248. https://doi.org/10.1186/s12866-016-0867-4
  36. Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep 2016;6:35045. https://doi.org/10.1038/srep35045
  37. Gibson GR, Wang X. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 1994;77:412-20. https://doi.org/10.1111/j.1365-2672.1994.tb03443.x
  38. Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci 2017;100:7825-33. https://doi.org/10.3168/jds.2017-12753
  39. Puccio G, Alliet P, Cajozzo C, Janssens E, Corsello G, Sprenger N, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr 2017;64:624-31. https://doi.org/10.1097/MPG.0000000000001520
  40. Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 2005;15:31-41. https://doi.org/10.1093/glycob/cwh143
  41. Yu ZT, Nanthakumar NN, Newburg DS. The human milk oligosaccharide 2'-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J Nutr 2016;146:1980-90. https://doi.org/10.3945/jn.116.230706
  42. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen ($Fuc{\alpha}1$, $2Gal{\beta}1$, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 2003;278:14112-20. https://doi.org/10.1074/jbc.M207744200
  43. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 2005;135:1304-7. https://doi.org/10.1093/jn/135.5.1304
  44. Idanpaan-Heikkila I, Simon PM, Zopf D, Vullo T, Cahill P, Sokol K, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 1997;176:704-12. https://doi.org/10.1086/514094
  45. Lin AE, Autran CA, Szyszka A, Escajadillo T, Huang M, Godula K, et al. Human milk oligosaccharides inhibit growth of group B Streptococcus. J Biol Chem 2017;292:11243-9. https://doi.org/10.1074/jbc.M117.789974
  46. Moukarzel S, Bode L. Human milk oligosaccharides and the preterm infant: a journey in sickness and in health. Clin Perinatol 2017;44:193-207. https://doi.org/10.1016/j.clp.2016.11.014
  47. Autran CA, Kellman BP, Kim JH, Asztalos E, Blood AB, Spence EC, et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 2018;67:1064-70. https://doi.org/10.1136/gutjnl-2016-312819
  48. Good M, Sodhi CP, Yamaguchi Y, Jia H, Lu P, Fulton WB, et al. The human milk oligosaccharide 2'-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br J Nutr 2016;116:1175-87. https://doi.org/10.1017/S0007114516002944
  49. Kuntz S, Kunz C, Rudloff S. Oligosaccharides from human milk induce growth arrest via G2/M by influencing growth-related cell cycle genes in intestinal epithelial cells. Br J Nutr 2009;101:1306-15. https://doi.org/10.1017/S0007114508079622
  50. Holscher HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr 2014;144:586-91. https://doi.org/10.3945/jn.113.189704
  51. Kulinich A, Liu L. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr Res 2016;432:62-70. https://doi.org/10.1016/j.carres.2016.07.009
  52. Donovan SM, Comstock SS. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann Nutr Metab 2016;69 Suppl 2:42-51. https://doi.org/10.1159/000452818
  53. Goehring KC, Marriage BJ, Oliver JS, Wilder JA, Barrett EG, Buck RH. Similar to those who are breastfed, infants fed a formula containing 2'-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J Nutr 2016;146:2559-66. https://doi.org/10.3945/jn.116.236919
  54. Comstock SS, Li M, Wang M, Monaco MH, Kuhlenschmidt TB, Kuhlenschmidt MS, et al. Dietary human milk oligosaccharides but not prebiotic oligosaccharides increase circulating natural killer cell and mesenteric lymph node memory T cell populations in noninfected and rotavirus-infected neonatal piglets. J Nutr 2017;147:1041-7. https://doi.org/10.3945/jn.116.243774
  55. Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015;70:1091-102. https://doi.org/10.1111/all.12650
  56. He Y, Liu S, Kling DE, Leone S, Lawlor NT, Huang Y, et al. The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 2016;65:33-46. https://doi.org/10.1136/gutjnl-2014-307544
  57. Bienenstock J, Buck RH, Linke H, Forsythe P, Stanisz AM, Kunze WA. Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLoS One 2013;8:e76236. https://doi.org/10.1371/journal.pone.0076236
  58. Jacobi SK, Yatsunenko T, Li D, Dasgupta S, Yu RK, Berg BM, et al. Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. J Nutr 2016;146:200-8. https://doi.org/10.3945/jn.115.220152
  59. Matthies H, Staak S, Krug M. Fucose and fucosyllactose enhance in-vitro hippocampal long-term potentiation. Brain Res 1996;725:276-80. https://doi.org/10.1016/0006-8993(96)00406-4
  60. Vazquez E, Barranco A, Ramirez M, Gruart A, Delgado-Garcia JM, Martinez-Lara E, et al. Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 2015;26:455-65. https://doi.org/10.1016/j.jnutbio.2014.11.016
  61. Tarr AJ, Galley JD, Fisher SE, Chichlowski M, Berg BM, Bailey MT. The prebiotics 3'Sialyllactose and 6'Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: evidence for effects on the gut-brain axis. Brain Behav Immun 2015;50:166-77. https://doi.org/10.1016/j.bbi.2015.06.025
  62. Hahn WH, Kim J, Song S, Park S, Kang NM. The human milk oligosaccharides are not affected by pasteurization and freeze-drying. J Matern Fetal Neonatal Med 2019;32:985-91. https://doi.org/10.1080/14767058.2017.1397122
  63. Daniels B, Coutsoudis A, Autran C, Amundson Mansen K, Israel-Ballard K, Bode L. The effect of simulated flash heating pasteurisation and Holder pasteurisation on human milk oligosaccharides. Paediatr Int Child Health 2017;37:204-9. https://doi.org/10.1080/20469047.2017.1293869
  64. Marriage BJ, Buck RH, Goehring KC, Oliver JS, Williams JA. Infants fed a lower calorie formula with 2'FL show growth and 2'FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr 2015;61:649-58. https://doi.org/10.1097/MPG.0000000000000889
  65. Kajzer J, Oliver J, Marriage B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J 2016;30 Suppl:671.4.
  66. Janas B, Wernimont S, Gosoniu L, Northington R. Clinical safety of a new starter infant formula containing 2 human milk oligosaccharides (HMOs), complete report. Nestle Nutrition R&D Clinical Study Summary; November 2015. Vevey, Switzerland: Nestle; 2015.
  67. Prieto PA. In vitro and clinical experiences with a human milk oligosaccharide, lacto-N-neoTetraose, and fructooligosaccharides. Food Foods Ingredients J Jpn 2005;210:1018-30.
  68. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Safety of 2'-O-fucosyllactose as a novel food ingredient pursuant to regulation (EC) No 258/97. EFSA J 2015;13:4184.

Cited by

  1. Analysis of immune, microbiota and metabolome maturation in infants in a clinical trial of Lactobacillus paracasei CBA L74-fermented formula vol.11, pp.1, 2019, https://doi.org/10.1038/s41467-020-16582-1
  2. Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology vol.12, pp.1, 2019, https://doi.org/10.3390/nu12010266
  3. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being vol.12, pp.4, 2020, https://doi.org/10.3390/nu12041105
  4. Components of human breast milk: from macronutrient to microbiome and microRNA vol.63, pp.8, 2020, https://doi.org/10.3345/cep.2020.00059
  5. Deficiency of Intestinal α1‐2‐Fucosylation Exacerbates Ethanol‐Induced Liver Disease in Mice vol.44, pp.9, 2019, https://doi.org/10.1111/acer.14405
  6. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer vol.21, pp.19, 2019, https://doi.org/10.3390/ijms21197327
  7. A Partly Fermented Infant Formula with Postbiotics Including 3′-GL, Specific Oligosaccharides, 2′-FL, and Milk Fat Supports Adequate Growth, Is Safe and Well-Tolerated in Healthy Term Infa vol.12, pp.11, 2019, https://doi.org/10.3390/nu12113560
  8. The Protective and Long-Lasting Effects of Human Milk Oligosaccharides on Cognition in Mammals vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113572
  9. Recent advances and challenges in microbial production of human milk oligosaccharides vol.1, pp.1, 2019, https://doi.org/10.1007/s43393-020-00004-w
  10. A Comparison of Two Structurally Related Human Milk Oligosaccharide Conjugates in a Model of Diet-Induced Obesity vol.12, 2019, https://doi.org/10.3389/fimmu.2021.668217
  11. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn vol.12, 2019, https://doi.org/10.3389/fimmu.2021.683022
  12. The Relationship Between Breast Milk Components and the Infant Gut Microbiota vol.8, 2019, https://doi.org/10.3389/fnut.2021.629740
  13. Human Milk Oligosaccharide Concentrations and Infant Intakes Are Associated with Maternal Overweight and Obesity and Predict Infant Growth vol.13, pp.2, 2021, https://doi.org/10.3390/nu13020446
  14. Billionen Gesundheitshelfer - wie frühzeitig sind sie wichtig? vol.33, pp.suppl1, 2021, https://doi.org/10.1007/s15014-020-2471-1
  15. Bovine Milk Oligosaccharides and Human Milk Oligosaccharides Modulate the Gut Microbiota Composition and Volatile Fatty Acid Concentrations in a Preclinical Neonatal Model vol.9, pp.5, 2019, https://doi.org/10.3390/microorganisms9050884
  16. Microbial production of human milk oligosaccharide lactodifucotetraose vol.66, 2019, https://doi.org/10.1016/j.ymben.2021.03.014
  17. Wie lässt sich ein gesundes Darmmikrobiom fördern? vol.2, pp.3, 2019, https://doi.org/10.1007/s43877-021-0107-5
  18. The Roles of Prebiotics on Impaired Immune System in Preterm Infants: A Narrative Literature Review vol.5, pp.sp1, 2019, https://doi.org/10.20473/amnt.v5i1sp.2021.21-26
  19. Perspective of Indonesian Pediatricians on the Role of PrebioticSupplemented Formula towards Immunity, Growth and Development in Preterm Infants: A Preliminary Data vol.5, pp.sp1, 2021, https://doi.org/10.20473/amnt.v5i1sp.2021.34-42
  20. Human Milk, More Than Simple Nourishment vol.8, pp.10, 2019, https://doi.org/10.3390/children8100863
  21. Human Milk Oligosaccharides as a Missing Piece in Combating Nutritional Issues during Exclusive Breastfeeding vol.24, pp.6, 2019, https://doi.org/10.5223/pghn.2021.24.6.501
  22. The protective effects of human milk components, 2′-fucosyllactose and osteopontin, against 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice vol.87, 2019, https://doi.org/10.1016/j.jff.2021.104806
  23. Term Infant Formulas Influencing Gut Microbiota: An Overview vol.13, pp.12, 2021, https://doi.org/10.3390/nu13124200