• 제목/요약/키워드: Human mesenchymal stem cell

검색결과 227건 처리시간 0.02초

Effects of Adenoviral Gene Transduction on the Stemness of Human Bone Marrow Mesenchymal Stem Cells

  • Marasini, Subash;Chang, Da-Young;Jung, Jin-Hwa;Lee, Su-Jung;Cha, Hye Lim;Suh-Kim, Haeyoung;Kim, Sung-Soo
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.598-605
    • /
    • 2017
  • Human mesenchymal stem cells (MSCs) are currently being evaluated as a cell-based therapy for tissue injury and degenerative diseases. Recently, several methods have been suggested to further enhance the therapeutic functions of MSCs, including genetic modifications with tissue- and/or diseasespecific genes. The objective of this study was to examine the efficiency and stability of transduction using an adenoviral vector in human MSCs. Additionally, we aimed to assess the effects of transduction on the proliferation and multipotency of MSCs. The results indicate that MSCs can be transduced by adenoviruses in vitro, but high viral titers are necessary to achieve high efficiency. In addition, transduction at a higher multiplicity of infection (MOI) was associated with attenuated proliferation and senescence-like morphology. Furthermore, transduced MSCs showed a diminished capacity for adipogenic differentiation while retaining their potential to differentiate into osteocytes and chondrocytes. This work could contribute significantly to clinical trials of MSCs modified with therapeutic genes.

Enhancement of In Vivo Bone Regeneration Efficacy of Human Mesenchymal Stem Cells

  • Kang, Sun-Woong;Lee, Jae-Sun;Park, Min Sun;Park, Jung-Ho;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.975-982
    • /
    • 2008
  • We investigated whether transplantation of osteogenically differentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and the use of an hydroxyapatite (HAp) scaffold can enhance the in vivo bone formation efficacy of human BMMSCs. Three months after implantation to the subcutaneous dorsum of athymic mice, transplantation of osteogenically differentiated human BMMSCs increased the bone formation area and calcium deposition to 7.1- and 6.2-folds, respectively, of those of transplantation of undifferentiated BMMSCs. The use of the HAp scaffold increased the bone formation area and calcium deposition to 3.7- and 3.5-folds, respectively, of those of a polymer scaffold. Moreover, a combination of transplantation of osteogenically differentiated BMMSCs and HAp scaffold further increased the bone formation area and calcium deposition to 10.6- and 9.3-folds, respectively, of those of transplantation of undifferentiated BMMSCs seeded onto polymer scaffolds. The factorial experimental analysis showed that osteogenic differentiation of BMMSCs prior to transplantation has a stronger positive effect than the HAp scaffold on in vivo bone formation.

Estrogen Receptor-α Mediates the Effects of Estradiol on Telomerase Activity in Human Mesenchymal Stem Cells

  • Cha, Young;Kwon, Su Jin;Seol, Wongi;Park, Kyung-Soon
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.454-458
    • /
    • 2008
  • Sex steroid hormone receptors play a central role in modulating telomerase activity, especially in cancer cells. However, information on the regulation of steroid hormone receptors and their distinct functions on telomerase activity within the mesenchymal stem cell are largely unavailable due to low telomerase activity in the cell. In this study, the effects of estrogen ($E_2$) treatment and function of estrogen receptor alpha ($ER{\alpha}$) and estrogen receptor beta ($ER{\beta}$) on telomerase activity were investigated in human mesenchymal stem cells (hMSCs). Telomerase activity and mRNA expression of the catalytic subunit of telomerase (hTERT) were upregulated by treatment of the cells with $E_2$. The protein concentration of $ER{\alpha}$ was also increased by $E_2$ treatment, and enhancement of $ER{\alpha}$ accumulation in the nucleus was clearly detected with immunocytochemistry. When $ER{\alpha}$ expression was reduced by siRNA transfection into hMSCs, the effect of $E_2$ on the induction of hTERT expression and telomerase activity was diminished. In contrast, the transient overexpression of $ER{\alpha}$ increased the effect of $E_2$ on the expression of hTERT mRNA. These findings indicate that the activation of hTERT expression and telomerase activity by $E_2$ in hMSCs depends on $ER{\alpha}$, but not on $ER{\beta}$.

BMP4 처리에 의한 인간 배아줄기세포 유래 KDR 양성 중배엽성 세포군의 분화 양상 조사 (Identification and Characterization of a KDR-positive Mesoderm Population Derived from Human Embryonic Stem Cells Post BMP4 Treatment)

  • 김정모;손온주;조윤정;이재호;정형민
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.9-15
    • /
    • 2011
  • The functional cardiovascular system is comprised of distinct mesoderm-derived lineages including endothelial cells, vascular smooth muscle cells and other mesenchymal cells. Recent studies in the human embryonic stem cell differentiation model have provided evidence indicating that these cell lineages are developed from the common progenitors such as hemangioblasts and cardiovascular progenitor cells. Also, the studies have suggested that these progenitors have a common primordial progenitor, which expresses KDR (human Flk-1, also known as VEGFR2, CD309). We demonstrate here that sustained activation of BMP4 (bone morphogenetic protein 4) in hESC line, CHA15 hESC results in $KDR^+$ mesoderm specific differentiation. To determine whether the $KDR^+$ population derived from hESCs enhances potential to differentiate along multipotential mesodermal lineages than undifferentiated hESCs, we analyzed the development of the mesodermal cell types in human embryonic stem cell differentiation cultures. In embryoid body (EB) differentiation culture conditions, we identified an increased expression of $KDR^+$ population from BMP4-stimulated hESC-derived EBs. After induction with additional growth factors, the $KDR^+$ population sorted from hESCs-derived EBs displays mesenchymal, endothelial and vascular smooth muscle potential in matrix-coated monolayer culture systems. The populations plated in monolayer cultures expressed increased levels of related markers and exhibit a stable/homologous phenotype in culture terms. In conclusion, we demonstrate that the $KDR^+$ population is stably isolated from CHA15 hESC-derived EBs using BMP4 and growth factors, and sorted $KDR^+$ population can be utilized to generate multipotential mesodermal progenitors in vitro, which can be further differentiated into cardiovascular specific cells.

Alteration of Apoptosis during Differentiation in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Park, Byung-Joon;Jeon, Ryoung-Hoon;Jang, Si-Jung;Son, Young-Bum;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • 한국동물생명공학회지
    • /
    • 제34권1호
    • /
    • pp.2-9
    • /
    • 2019
  • Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.

Current Status and Future Strategies to Treat Spinal Cord Injury with Adult Stem Cells

  • Jeong, Seong Kyun;Choi, Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권2호
    • /
    • pp.153-162
    • /
    • 2020
  • Spinal cord injury (SCI) is one of the most devastating conditions and many SCI patients suffer neurological sequelae. Stem cell therapies are expected to be beneficial for many patients with central nervous system injuries, including SCI. Adult stem cells (ASCs) are not associated with the risks which embryonic stem cells have such as malignant transformation, or ethical problems, and can be obtained relatively easily. Consequently, many researchers are currently studying the effects of ASCs in clinical trials. The environment of transplanted cells applied in the injured spinal cord differs between the phases of SCI; therefore, many researchers have investigated these phases to determine the optimal time window for stem cell therapy in animals. In addition, the results of clinical trials should be evaluated according to the phase in which stem cells are transplanted. In general, the subacute phase is considered to be optimal for stem cell transplantation. Among various candidates of transplantable ASCs, mesenchymal stem cells (MSCs) are most widely studied due to their clinical safety. MSCs are also less immunogenic than neural stem/progenitor cells and consequently immunosuppressants are rarely required. Attempts have been made to enhance the effects of stem cells using scaffolds, trophic factors, cytokines, and other drugs in animal and/or human clinical studies. Over the past decade, several clinical trials have suggested that transplantation of MSCs into the injured spinal cord elicits therapeutic effects on SCI and is safe; however, the clinical effects are limited at present. Therefore, new therapeutic agents, such as genetically enhanced stem cells which effectively secrete neurotrophic factors or cytokines, must be developed based on the safety of pure MSCs.

Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells

  • Moussavou, Ghislain;Kwak, Dong Hoon;Lim, Malg-Um;Kim, Ji-Su;Kim, Sun-Uk;Chang, Kyu-Tae;Choo, Young-Kug
    • BMB Reports
    • /
    • 제46권11호
    • /
    • pp.527-532
    • /
    • 2013
  • Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs.

Propyl Gallate Inhibits Adipogenesis by Stimulating Extracellular Signal-Related Kinases in Human Adipose Tissue-Derived Mesenchymal Stem Cells

  • Lee, Jeung-Eun;Kim, Jung-Min;Jang, Hyun-Jun;Lim, Se-Young;Choi, Seon-Jeong;Lee, Nan-Hee;Suh, Pann-Ghill;Choi, Ung-Kyu
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.336-342
    • /
    • 2015
  • Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$), CCAAT enhancer binding protein-${\alpha}$ (C/EBP-${\alpha}$), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease

  • Yoo, Hyun Seung;Yi, TacGhee;Cho, Yun Kyoung;Kim, Woo Cheol;Song, Sun U.;Jeon, Myung-Shin
    • IMMUNE NETWORK
    • /
    • 제13권4호
    • /
    • pp.133-140
    • /
    • 2013
  • Since the discovery of the immunomodulation property of mesenchymal stem cells (MSCs) about a decade ago, it has been extensively investigated whether MSCs can be used for the treatment of immune-related diseases, such as graft versus-host disease (GvHD). However, how to evaluate the efficacy of human MSCs for the clinical trial is still unclear. We used an MHC-mismatched model of GvHD (B6 into BALB/c). Surprisingly, the administration of the human MSCs (hMSCs) could reduce the GvHD-related mortality of the mouse recipients and xenogeneically inhibit mouse T-cell proliferation and $IFN-{\gamma}$ production in vitro. We recently established a new protocol for the isolation of a homogeneous population of MSCs called subfractionation culturing methods (SCM), and established a library of clonal MSC lines. Therefore, we also investigated whether MSCs isolated by the conventional gradient centrifugation method (GCM) and SCM show different efficacy in vivo. Intriguingly, clonal hMSCs (hcMSCs) isolated by SCM showed better efficacy than hMSCs isolated by GCM. Based on these results, the MHC-mismatched model of GvHD may be useful for evaluating the efficacy of human MSCs before the clinical trial. The results of this study suggest that different MSC lines may show different efficacy in vivo and in vitro.