Browse > Article
http://dx.doi.org/10.4110/in.2013.13.4.133

Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease  

Yoo, Hyun Seung (Translational Research Center, Inha University School of Medicine)
Yi, TacGhee (Translational Research Center, Inha University School of Medicine)
Cho, Yun Kyoung (HomeoTherapy Co. Ltd.)
Kim, Woo Cheol (Department of Radiation Oncology, Inha University School of Medicine)
Song, Sun U. (Translational Research Center, Inha University School of Medicine)
Jeon, Myung-Shin (Translational Research Center, Inha University School of Medicine)
Publication Information
IMMUNE NETWORK / v.13, no.4, 2013 , pp. 133-140 More about this Journal
Abstract
Since the discovery of the immunomodulation property of mesenchymal stem cells (MSCs) about a decade ago, it has been extensively investigated whether MSCs can be used for the treatment of immune-related diseases, such as graft versus-host disease (GvHD). However, how to evaluate the efficacy of human MSCs for the clinical trial is still unclear. We used an MHC-mismatched model of GvHD (B6 into BALB/c). Surprisingly, the administration of the human MSCs (hMSCs) could reduce the GvHD-related mortality of the mouse recipients and xenogeneically inhibit mouse T-cell proliferation and $IFN-{\gamma}$ production in vitro. We recently established a new protocol for the isolation of a homogeneous population of MSCs called subfractionation culturing methods (SCM), and established a library of clonal MSC lines. Therefore, we also investigated whether MSCs isolated by the conventional gradient centrifugation method (GCM) and SCM show different efficacy in vivo. Intriguingly, clonal hMSCs (hcMSCs) isolated by SCM showed better efficacy than hMSCs isolated by GCM. Based on these results, the MHC-mismatched model of GvHD may be useful for evaluating the efficacy of human MSCs before the clinical trial. The results of this study suggest that different MSC lines may show different efficacy in vivo and in vitro.
Keywords
Mesenchymal stem cells; graft-versus-host disease; T-cell; $IFN-{\gamma}$; Efficacy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goker, H., I. C. Haznedaroglu, and N. J. Chao. 2001. Acute graft-vs-host disease: pathobiology and management. Exp. Hematol. 29: 259-277.   DOI
2 Menillo, S. A., S. L. Goldberg, P. McKiernan, and A. L. Pecora. 2001. Intraoral psoralen ultraviolet A irradiation (PUVA) treatment of refractory oral chronic graft-versus-host disease following allogeneic stem cell transplantation. Bone Marrow. Transplant. 28: 807-808.   DOI
3 Deeg, H. J. 2007. How I treat refractory acute GVHD. Blood 109: 4119-4126.   DOI
4 Rager, A., N. Frey, S. C. Goldstein, R. Reshef, E. O. Hexner, A. Loren, S. M. Luger, A. Perl, D. Tsai, J. Davis, M. Vozniak, J. Smith, E. A. Stadtmauer, and D. L. Porter. 2011. Inflammatory cytokine inhibition with combination daclizumab and infliximab for steroid-refractory acute GVHD. Bone Marrow. Transplant. 46: 430-435.   DOI
5 Schub, N., A. Gunther, A. Schrauder, A. Claviez, C. Ehlert, M. Gramatzki, and R. Repp. 2011. Therapy of steroid-refractory acute GVHD with CD52 antibody alemtuzumab is effective. Bone Marrow. Transplant. 46: 143-147.   DOI
6 Prockop, D. J. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71-74.   DOI
7 Branch, M. J., K. Hashmani, P. Dhillon, D. R. Jones, H. S. Dua, and A. Hopkinson. 2012. Mesenchymal stem cells in the human corneal limbal stroma. Invest. Ophthalmol. Vis. Sci. 53: 5109-5116.   DOI
8 Tse, W. T., J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75: 389-397.   DOI
9 Di Nicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, S. Grisanti, and A. M. Gianni. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838-3843.   DOI
10 Jiang, X. X., Y. Zhang, B. Liu, S. X. Zhang, Y. Wu, X. D. Yu, and N. Mao. 2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120-4126.   DOI
11 Sotiropoulou, P. A., S. A. Perez, A. D. Gritzapis, C. N. Baxevanis, and M. Papamichail. 2006. Interactions between human mesenchymal stem cells and natural killer cells. Stem. Cells. 24: 74-85.   DOI
12 Le Blanc, K., F. Frassoni, L. Ball, F. Locatelli, H. Roelofs, I. Lewis, E. Lanino, B. Sundberg, M. E. Bernardo, M. Remberger, G. Dini, R. M. Egeler, A. Bacigalupo, W. Fibbe, and O. Ringden; Developmental Committee of the European Group for Blood and Marrow Transplantation. 2008. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 371: 1579- 1586.   DOI
13 Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, and A. Uccelli. 2006. Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367-372.   DOI
14 Glennie, S., I. Soeiro, P. J. Dyson, E. W. Lam, and F. Dazzi. 2005. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105: 2821-2827.   DOI
15 Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, and O. Ringden. 2004. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 363: 1439-1441.   DOI
16 Ringden, O., M. Uzunel, I. Rasmusson, M. Remberger, B. Sundberg, H. Lonnies, H. U. Marschall, A. Dlugosz, A. Szakos, Z. Hassan, B. Omazic, J. Aschan, L. Barkholt, and K. Le Blanc. 2006. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81: 1390- 1397.   DOI
17 Allison, M. 2009. Genzyme backs osiris, despite prochymal flop. Nat. Biotechnol. 27: 966-967.   DOI
18 Li, W. J., H. Chiang, T. F. Kuo, H. S. Lee, C. C. Jiang, and R. S. Tuan. 2009. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J. Tissue. Eng. Regen. Med. 3: 1-10.   DOI
19 Yan, H. and C. Yu. 2007. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 23: 178-187.   DOI
20 Liao, W., J. Xie, J. Zhong, Y. Liu, L. Du, B. Zhou, J. Xu, P. Liu, S. Yang, J. Wang, Z. Han, and Z. C. Han. 2009. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 87: 350-359.   DOI
21 Bruck, F., L. Belle, C. Lechanteur, L. de Leval, M. Hannon, S. Dubois, E. Castermans, S. Humblet-Baron, S. Rahmouni, Y. Beguin, A. Briquet, and F. Baron. 2013. Impact of bone marrow-derived mesenchymal stromal cells on experimental xenogeneic graft-versus-host disease. Cytotherapy 15: 267-279   DOI
22 Song, S. U., C. S. Kim, S. P. Yoon, S. K. Kim, M. H, Lee, J. S. Kang, G. S. Choi, S. H. Moon, M. S. Choi, Y. K. Cho, and B. K. Son. 2008. Variations of clonal marrow stem cell lines established from human bone marrow in surface epitopes, differentiation potential, gene expression, and cytokine secretion. Stem. Cells. Dev. 17: 451-461.   DOI
23 Jeon, M. S., T. G. Yi, H. J. Lim, S. H. Moon, M. H. Lee, J. S. Kang, C. S. Kim, D. H. Lee, and S. U. Song. 2011. Characterization of mouse clonal mesenchymal stem cell lines established by subfractionation culturing method. World. J. Stem. Cells. 3: 70-82.   DOI
24 Saito, T., J. Q. Kuang, B. Bittira, A. Al-Khaldi, and R. C. Chiu. 2002. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann. Thorac. Surg. 74: 19-24.   DOI
25 Liechty, K. W., T. C. MacKenzie, A. F. Shaaban, A. Radu, A. M. Moseley, R. Deans, D. R. Marshak, and A. W. Flake. 2000. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6: 1282-1286.   DOI
26 Sato, K., K. Ozaki, I. Oh, A. Meguro, K. Hatanaka, T. Nagai, K. Muroi, and K. Ozawa. 2007. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109: 228-234.   DOI
27 Jeon, M. S., H. J. Lim, T. G. Yi, M. W. Im, H. S. Yoo, J. H. Choi, E. Y. Choi, and S. U. Song. 2010. Xenoreactivity of human clonal mesenchymal stem cells in a major histocompatibility complex-matched allogeneic graft-versus-host disease mouse model. Cell. Immunol. 261: 57-63.   DOI
28 Ren, G., L. Zhang, X. Zhao, G. Xu, Y. Zhang, A. I. Roberts, R. C. Zhao, and Y. Shi. 2008. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell. Stem. Cell. 2: 141-150.   DOI
29 Dazzi, F. and F. M. Marelli-Berg. 2008. Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur. J. Immunol. 38: 1479-1482.   DOI
30 Katz, J. B., A. J. Muller, and G. C. Prendergast. 2008. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 222: 206-221.   DOI
31 Baron, F. and R. Storb. 2012. Mesenchymal stromal cells: a new tool against graft-versus-host disease? Biol. Blood Marrow. Transplant. 18: 822-840.   DOI
32 Sudres, M., F. Norol, A. Trenado, S. Gregoire, F. Charlotte, B. Levacher, J. J. Lataillade, P. Bourin, X. Holy, J. P. Vernant, D. Klatzmann, and J. L. Cohen. 2006. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J. Immunol. 176: 7761-7767.   DOI
33 Polchert, D., J. Sobinsky, G. Douglas, M. Kidd, A. Moadsiri, E. Reina, K. Genrich, S. Mehrotra, S. Setty, B. Smith, and A. Bartholomew. 2008. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur. J. Immunol. 38: 1745-1755.   DOI
34 Jang, M. J., H. S. Kim, H. G. Lee, G. J. Kim, H. G. Jeon, H. S. Shin, S. K. Chang, G. H. Hur, S. Y. Chong, D. Oh, and H. M. Chung. 2013. Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta. Haematol. 129: 197-206   DOI
35 Yanez, R., M. L. Lamana, J. Garcia-Castro, I. Colmenero, M. Ramirez, and J. A. Bueren. 2006. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem. Cells. 24: 2582-2591.   DOI