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Gangliosides are complex glycosphingolipids that are the ma-
jor component of cytoplasmic cell membranes, and play a role 
in the control of biological processes. Human mesenchymal 
stem cells (hMSCs) have received considerable attention as al-
ternative sources of adult stem cells because of their potential 
to differentiate into multiple cell lineages. In this study, we fo-
cus on various functional roles of gangliosides in the differ-
entiation of hMSCs into osteoblasts or neuronal cells. A rela-
tionship between gangliosides and epidermal growth factor re-
ceptor (EGFR) activation during osteoblastic differentiation of 
hMSCs was observed, and the gangliosides may play a major 
role in the regulation of the differentiation. The roles of gan-
gliosides in osteoblast differentiation are dependent on the ori-
gin of hMSCs. The reduction of ganglioside biosynthesis in-
hibited the neuronal differentiation of hMSCs during an early 
stage of the differentiation process, and the ganglioside ex-
pression can be used as a marker for the identification of neu-
ronal differentiation from hMSCs. [BMB Reports 2013; 46(11): 
527-532]

INTRODUCTION

Gangliosides are sialic acid-containing glycosphingolipids 
(GSLs) ubiquitously distributed in tissues and body fluids, and 
are abundantly expressed in the nervous system (1). The bio-
logical role of gangliosides in cellular regulation is wellrecog-
nized (2-6). Gangliosides are known to function in cell pro-

liferation, adhesion, migration, apoptosis, and cell-cell and 
cell-substratum interactions. They can also act as receptors for 
bacterial toxins (7-9). Numerous studies have confirmed that 
various gangliosides and their expression levels are devel-
opmentally controlled, and are specific for cell types (10-12). 
Recently, it has also been suggested that gangliosides initiate 
the aggregation of amyloid-β peptide and contribute to the 
onset of Alzheimer’s disease (13).
　Stem cells can be used for the study of developmental proc-
esses and offer tremendous potential for clinical applications 
as an unlimited source for transplantation and tissue re-
generation therapies (14). Generally, there are 2 types of stem 
cells used in clinical applications: mouse embryonic stem cells 
(mESCs) and mesenchymal stem cells (MSCs). The mESCs are 
pluripotent cells, which are generated from the inner cell mass 
of blastocysts (15). In recent years, MSCs have received con-
siderable attention as a potential source of cell-based thera-
pies, and as a cell type that supports the engraftment of hema-
topoietic stem cells (HSC) (16, 17). MSCs can be easily ob-
tained, typically from bone marrow, but also from other sour-
ces, such as umbilical cord blood, adipose tissue, and the pla-
centa (18-20). In previous studies, multipotent neural cells 
have been generated from MSCs cultured in neural stem cell 
(NSC) culture conditions, and these cells could be further dif-
ferentiated into astrocytes, neurons, and oligodendrocytes 
(21-23).
　Osteoblasts are mononucleated cells that are responsible for 
bone formation. When osteoprogenitors start to differentiate 
into osteoblasts, they begin to express a range of genetic mark-
ers, including alkaline phosphatase (ALP), osteocalsin, colla-
gen I, and osterix (24, 25). 
　Cell differentiation is a highly regulated process that de-
pends on many extracellular and intracellular factors for its 
modulation. Several studies have reported that gangliosides 
are important for neuronal (26) and osteoblast differentiation 
(27) of mESCs and MSCs. In the present study, we show differ-
ent functions of gangliosides in the differentiation of human 
MSCs (hMSCs) into osteoblasts (Table 1 and 3) and neuronal 
cells (Table 1 and 2).
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Cells Gangliosides expression on 
neuronal cells differentiation Cells Gangliosides expression on 

osteoblasts differentiation

hDPSCs
20% FBS + 1 mM BME
SPM + 2 mM BME
Differentiation on 1 week
Differentiation on 2 weeks

GM3, GM2, GD1a
GM3, GD1a
GM3, GD1a
GM3, GD3, GD1a
GM3, GD3, GD1a

hADSCs
hADSCs-derived osteoblasts
hDPSCs
hDPSCs-derived osteoblasts

GM3, GM2, GD1a
GM3, GM2, GD1a
GM3, GM2, GD1a
GM3, GM2, GD1a

Table 1. Gangliosides expression in the differentiation of hMSCs, hADSCs and hDPSCs into neuronal cells and osteoblasts

Gangliosides Roles References

GD2

GM1

GT1b

GD3 & GD1a

GM3 & GD3
GT1b & GM1

Deficiency leads to down-regulation of genes
Marker for neuronal differentiation
Promoter the differentiation of neuronal cells
Protection from apoptosis
Regulatory role during neurogenesis and regeneration

It enhances actin-rich dendrite generation
Inhibitory effect on neuritis out growth
Induction of differentiation of (mESs and) MSCs into neuronal cells
Up-regulation in synapses in brain
Induction of early neuronal differentiation
Brain development
Maturation of neuronal cells
Regulation cell differentiation and proliferation
Induction of differentiation of (mESCs and ) MSCs into neuronal cell
Biomarker to neuronal differentiation

Takamiya et al., 1996 (51)
Kwak et al., 2006 (46)
Todeschini et al., 2008 (42)
Ferrari et al., 1995 (52) 
Cavallini et al., 1999 (53)
Stojiljkovic et al., 1996 (54)
Higashi and Chen, 2004 (44)
Vinson et al., 2001 (55)
Kwak et al., 2006 (46)
Kotani et al., 1993 (43)
Ryu et al., 2009 (40)
Jennemann et al., 2005 (56)
Yamashita et al., 1999 (57)
Kwak et al., 2006 (46)
Kwak et al., 2006 (46)
Kwak et al., 2011 (58)

Table 2. Roles of gangliosides in the differentiation of hMSCs into neuronal cells

Gangliosides Roles References

GD1a

GM3 
GD1a & GM3

It enhances EGF-induce EGFR phosphorylation, which promotes osteoblast differentiation

It improves osteoblast ERK signaling through EGFR phosphorylation
It reduces EGFR phosphorylation
They regulate the initiation step of osteoblast differentiation
They are important for beta-glycophosphate-, ascorbic acid-, and dexamethasone-induced osteoblastogenesis

Jaiswal et al., 2000 (30)
Liu et al., 2004 (35)
Kim et al., 2008 (34)
Kim et al., 2008 (34)
Kim et al., 2008 (34)

Table 3. Roles of gangliosides in the differentiation of hMSCs into osteoblasts

FUNCTIONS OF GANGLIOSIDES IN THE DIFFERENTIA-
TION OF hMSCs INTO OSTEOBLASTS
Several studies reported different functions of gangliosides in 
the differentiation of hMSCs into osteoblasts. Gangliosides are 
known to functionally regulate several growth factor receptors 
and fibroblast growth factor receptors (28). Epidermal growth 
factor receptor (EGFR) is a 170 kDa transmembrane glyco-
protein that signals various processes, including proliferation, 
and differentiation, in a wide variety of cell types (29). Several 
studies have shown that EGFR, extracellular signal-regulated 
kinases 1/2 (ERK1/2), and mitogen-activated protein (MAP) kin-
ase are involved in the regulation of osteoblastic differentiation 

(30-33). In addition, differentiation of hMSCs into osteoblasts 
is regulated by EGFR activation (34). Therefore, we inves-
tigated the relationship between gangliosides and EGFR activa-
tion during the differentiation of hMSCs into osteoblasts. In a 
previous study, the effects of gangliosides on osteoblasto-
genesis were observed (34). However, only GM3, GM2, and 
GD1a were observed in the hMSCs. In addition, high-perform-
ance thin-layer chromatography (HPTLC) showed that ganglio-
side GM3 expression was decreased, whereas ganglioside 
GD1a expression was increased during the differentiation of 
hMSCs into osteoblasts. 
　In previous studies examining the expression patterns of 
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gangliosides in the differentiation of human adipose and den-
tal pulp-derived MSCs into osteoblasts, the expression of 
GD1a was significantly increased (27, 34). Additionally, it was 
reported that the addition of gangliosides to culture media en-
hanced the phosphorylation of EGFR during differentiation of 
hMSCs into osteoblasts, and that the expression levels of gan-
glioside GD1a in the differentiated osteoblasts increased com-
pared to that in hMSCs. According to Kim et al. (2008), a re-
duction in AG1478-stimulated EGFR phosphorylation was re-
covered by GD1a (34). However, treatment with GM3 re-
duced EGF and AG1478-stimulated EGFR phosphorylation. 
This interpretation represents a novel effect of gangliosides on 
cell signaling, in which stochastic increases in the proximity of 
these receptors to one another leads to enhanced efficiency of 
binding and signaling after stimulation by a growth factor. 
Indeed, GM3 seems to act as a physiological competitor for 
EGFR dimerization by binding directly to the extracellular do-
main of EGFR, consequently inhibiting EGFR autophosphor-
ylation (28). In contrast to GM3, GD1a increases the effective 
amount of high-affinity EGFR without total receptor protein 
and facilitates receptor-receptor interactions, which triggers in-
creased EGFR dimerization, eventually enhancing EGFR-medi-
ated signaling (35). 
　It has been revealed that ganglioside GD1a expression was 
significantly elevated in the differentiation of osteoblasts from 
hMSCs. Therefore, the specific role of ganglioside GD1a was 
investigated because its role in osteogenic celldifferentiation 
was not fully understood. Previous studies (36, 37) suggest that 
ganglioside GD1a plays a major role in regulating the differ-
entiation of hMSCs into osteoblasts. The suppression of gan-
glioside GD1a synthesis by the knockdown of ST3Gal II 
mRNA, which is a rate-limiting enzyme for ganglioside GD1a 
synthesis, possibly disturbs the osteoblast differentiation of 
hMSCs. Yang et al. (2011) reported that osteoblasts that had 
been differentiated from hMSCs by ST3Gal II mRNA knock-
down showed a significant decrease in ALP activity and gan-
glioside GD1a expression (37). The decrease in ganglioside 
GD1a expression in osteoblasts showed accordance with a 
dramatic reduction in ST3Gal II mRNA expression in hMSCs, 
indicating that ST3Gal II shRNA-inserted lentiviral infection in 
hMSCs successfully suppressed the expression of ST3Gal II 
mRNA, thereby resulting in inhibition of ganglioside GD1a 
biosynthesis. These results possibly indicate that suppression 
of ganglioside GD1a expression disturbed the differentiation 
into osteoblasts.
　Several studies have also reported that MSCs are found in 
various tissues, such as bone marrow, umbilical cord blood, 
adipose tissue (38), and dental pulp (20, 25). Therefore, the 
roles of gangliosides in osteoblast differentiation depend on 
the origin of the hMSCs. Lee et al. (2010) have compared gan-
glioside expression for the differentiation of human adi-
pose-derived stem cells (hADSCs) and human dental pulp-de-
rived stem cells (hDPSCs) into osteoblasts (27). Gangliosides 
GM3, GM2, and GD1a were detected in hADSCs and hDPSCs 

(Table 1). In addition, only GD1a expression was increased 
during osteoblast differentiation in hADSCS, whereas in 
hDPSCs, GM3, GM2, and GD1a were mostly increased. ALP 
activity was also increased in differentiated osteoblasts when 
compared to hADSCs and hDPSCs. Interestingly, there was 
more increase in the ALP activity of differentiated osteoblasts 
from hDPSCs than hADSCs-derived osteoblasts. These results 
suggest that gangliosides might play a role in the differ-
entiation of hADSCs and hDPSCs into osteoblasts, and that the 
role is more important in regulating the osteoblast-differ-
entiation of hDPSCs compared to hADSCs. 

FUNCTIONS OF GANGLIOSIDES IN THE DIFFERENTIA-
TION OF hMSCS INTO NEURONAL CELLS
Accumulating evidence has suggested cellular roles of ganglio-
sides in the regulation of cell differentiation and proliferation 
(39, 40). Previous studies have suggested that gangliosides are 
important factors for neuronal differentiation of hMSCs (7, 26). 
There have been a number of fruitful approaches in determin-
ing the role of gangliosides in neuronal differentiation. One of 
the earliest and most direct was the study of correlative 
changes in ganglioside composition that accompany normal 
development in vivo and in vitro (41). For example, the mono-
sialoganglioside GM1 has been shown to promote the differ-
entiation of various neuronal cells in culture (42). Ganglioside 
GT1b is expressed in the synapses of the brain (43). Higashi 
and Chen (2004) found that the exposure of neurons to gan-
glioside GT1b for 3 days drastically enhanced actin-rich den-
drite generation (44). 
　Another study showed that when hMSCs were cultured un-
der neuronal differentiation conditions, neuronal cell marker 
genes, such as Nestin, MAP-2, and NeuN, were expressed 
(40). Moreover, immunostaining and HPTLC analysis showed 
that an increase in ganglioside biosynthesis was associated 
with neural differentiation of hMSCs. Specifically, a significant 
increase in GD3 and GD1a expression was observed during 
neural differentiation. Table 1 shows ganglioside expression 
during neuronal differentiation of hMSCs. To evaluate the im-
portance of gangliosides in the neural differentiation of 
hMSCs, UCGC gene expression was knocked down using viral 
shRNA to block the biosynthesis of gangliosides. The results 
suggested that gangliosides play a role in the neural differ-
entiation process of hMSCs. Next, it was demonstrated that ex-
pression of GD3 increased, along with early neuronal differ-
entiation of embryonic stem cells (ESCs), and that the ex-
pression of GD1a was only detected when ESCs further differ-
entiated into neuronal cells (36). Therefore, the ganglioside ex-
pression patterns during neuronal differentiation of hMSCs are 
similar to those of ESCs. 
　Numerous studies have suggested a close relationship be-
tween the regulation of ganglioside levels through exogenous 
drug analogues and the induction of neuronal differentiation. 
In a study by Osanai et al. (2003), levels and types of ganglio-
sides were observed to change during neuronal differentiation, 
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and GD3, GT1b, and GQ1b were enhanced when neural dif-
ferentiation of embryonic carcinoma cells was induced by reti-
noic acid (RA) (45). Kwak et al. (2006) have suggested that 
ganglioside GT1b is necessary for the differentiation of mESCs 
and MSCs into neuronal cells (46). There is accumulating evi-
dence that ganglioside GT1b may regulate neuronal cell 
differentiation. Previous studies reported that ganglioside GD2 
may also be involved in cell-context-specific cellular functions 
(10, 11). Gangliosides are ubiquitously expressed in many tis-
sues, including the central nervous system, where GD2 plays a 
modulatory role in balancing the expression of both simple 
and complex gangliosides on the cell surface (47). Another 
study showed that ganglioside GD2 expression is closely asso-
ciated with neuronal differentiation of human umbilical cord 
blood-derived mesenchymal stem cells (48). It has also been 
suggested that the expression of ganglioside is closely related 
to neuronal differentiation of embryonic stem cells in vitro 
(36). According to one study, ganglioside expression can be 
used as a marker for identification of neuronal differentiation 
from embryonic bodies (EBs) and MSCs (46). Some researchers 
have also found that GD2 is useful as a marker molecule for 
isolating mesenchymal stem cells, multipotent stromal cells 
that can differentiate into cells of the mesodermal lineage, 
such as myocytes, osteocytes, adipocytes, and chondrocytes, 
from human bone marrow (49) and umbilical cord blood (50). 
Table 2 summarizes the different roles of gangliosides in the 
differentiation of hMSCs into neuronal cells, and Table 3 in-
dicates the various roles of gangliosides in the differentiation 
of hMSCs into osteoblasts. As described above, hMSCs have 
the potential to differentiate into osteoblasts or neuronal cells. 
This study also suggests that various gangliosides have im-
portant roles regarding osteoblast or neuronal differentiation of 
hMSCs, and those roles depend on the origin of the hMSCs. 
This study reveals that more gangliosides are involved in neu-
ronal differentiation than in osteoblast differentiation. Such in-
formation will undoubtedly stimulate progress in the under-
standing of stem cell-based therapeutic strategies for a variety 
of tissue damage conditions and degenerative diseases. Further 
identification of gangliosides in stem cells and thorough char-
acterization of the expression of marker gangliosides will con-
tribute to progress in basic research and clinical applications 
in stem cell therapy.
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