Browse > Article

Enhancement of In Vivo Bone Regeneration Efficacy of Human Mesenchymal Stem Cells  

Kang, Sun-Woong (Department of Chemical Engineering, Hanyang University)
Lee, Jae-Sun (Department of Orthopaedic Surgery, Ansan Hospital, College of Medicine, Korea University)
Park, Min Sun (Department of Chemical Engineering, Hanyang University)
Park, Jung-Ho (Department of Orthopaedic Surgery, Ansan Hospital, College of Medicine, Korea University)
Kim, Byung-Soo (Department of Bioengineering, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.5, 2008 , pp. 975-982 More about this Journal
Abstract
We investigated whether transplantation of osteogenically differentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and the use of an hydroxyapatite (HAp) scaffold can enhance the in vivo bone formation efficacy of human BMMSCs. Three months after implantation to the subcutaneous dorsum of athymic mice, transplantation of osteogenically differentiated human BMMSCs increased the bone formation area and calcium deposition to 7.1- and 6.2-folds, respectively, of those of transplantation of undifferentiated BMMSCs. The use of the HAp scaffold increased the bone formation area and calcium deposition to 3.7- and 3.5-folds, respectively, of those of a polymer scaffold. Moreover, a combination of transplantation of osteogenically differentiated BMMSCs and HAp scaffold further increased the bone formation area and calcium deposition to 10.6- and 9.3-folds, respectively, of those of transplantation of undifferentiated BMMSCs seeded onto polymer scaffolds. The factorial experimental analysis showed that osteogenic differentiation of BMMSCs prior to transplantation has a stronger positive effect than the HAp scaffold on in vivo bone formation.
Keywords
Bone formation; hydroxyapatite; mesenchymal stem cell; osteogenic differentiation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Attin, T., K. Becker, C. Hannig, W. Buchalla, and R. Hilgers. 2005. Method to detect minimal amounts of calcium dissolved in acidic solutions. Caries Res. 39: 432-436   DOI   ScienceOn
2 Bruder, S. P., K. H. Kraus, V. M. Goldberg, and S. Kadiyala. 1998. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am. 80: 985-996   DOI
3 Chen, Y. L., H. C. Chen, H. P. Lee, H. Y. Chan, and Y. C. Hu. 2006. Rational development of GAG-augmented chitosan membranes by fractional factorial design methodology. Biomaterials 27: 2222-2232   DOI   ScienceOn
4 Derubeis, A. R. and R. Cancedda. 2004. Bone marrow stromal cells (BMSCs) in bone engineering: Limitations and recent advances. Ann. Biomed. Eng. 32: 160-165   DOI   ScienceOn
5 El-Ghannam, A., P. Ducheyne, and I. M. Shapiro. 1997. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. J. Biomed. Mater. Res. 36: 167-180   DOI   ScienceOn
6 Frank, O., M. Heim, and M. Jakob. 2002. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J. Cell Biochem. 85: 737-746   DOI   ScienceOn
7 Gazit, D., G. Turgeman, P. Kelley, E. Wang, M. Jalenak, Y. Zilberman, and I. Moutsatsos. 1999. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: A novel cell-mediated gene therapy. J. Gene Med. 1: 121-133   DOI   ScienceOn
8 Haynesworth, S. E., J. Goshima, V. M. Goldberg, and A. Caplan. 1992. Characterization of cells with osteogenic potential from human marrow. Bone 13: 81-88   DOI   ScienceOn
9 Jaiswal, N., S. E. Haynesworth, and A. I. Caplan. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64: 295-312   DOI   ScienceOn
10 Kon, E., A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, et al. 2000. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49: 328-337   DOI   ScienceOn
11 Marcacci, M., E. Kon, V. Moukhachev, A. Lavroukov, S. Kutepov, R. Quarto, M. Mastrogiacomo, and R. Cancedda. 2007. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 13: 947-955   DOI   ScienceOn
12 Shang, Q., Z. Wang, W. Liu, Y. Shi, L. Cui, and Y. Cao. 2001. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J. Craniofac. Surg. 12: 586-593   DOI   ScienceOn
13 Ehara, A., K. Ogata, S. Imazato, S. Ebisu, T. Nakano, and Y. Umakoshi. 2003. Effects of alpha-TCP and TetCP on MC3T3- E1 proliferation, differentiation and mineralization. Biomaterials 24: 831-836   DOI   ScienceOn
14 Murphy, W. L., S. Hsiong, T. P. Richardson, C. A. Simmons, and D. J. Mooney. 2005. Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro. Biomaterials 26: 303-310   DOI   ScienceOn
15 Song, S. J., O. Jeon, H. S. Yang, D. K. Han, and B. S. Kim. 2007. Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells. J. Microbiol. Biotechnol. 17: 1113-1119   과학기술학회마을
16 Song, H. B., D. C. Park, G. M. Do, S. L. Hwang, W. K. Lee, H. S. Kang, et al. 2006. Effect of exopolymers of aureobasidium pullulans on improving osteoporosis induced in ovariectomized mice. J. Microbiol. Biotechnol. 16: 37-45   과학기술학회마을
17 Arinzeh, T. L., S. J. Peter, M. P. Archambault, C. van den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala. 2003. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 85: 1927-1935   DOI
18 Cheng, S. L., J. W. Yang, L. Rifas, S. F. Zhang, and L. V. Avioli. 1994. Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone. Endocrinology 134: 277-286   DOI   ScienceOn
19 Flautre, B., K. Anselme, C. Delecourt, J. Lu, and P. Hardouin. 1999. Histological aspects in bone regeneration of an association with porous hydroxyapatite and bone marrow cells. J. Mater. Sci. Mater. Med. 10: 811-814   DOI   ScienceOn
20 Kim, S. S., K. M. Ahn, M. S. Park, J. H. Lee, C. Y. Choi, and B. S. Kim. 2007. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res. 80: 206-215
21 Pittenger, M. F., A. M. Mackay, S. C. Beck, P. K. Jaiswal, R. Douglas, J. D. Mosca, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147   DOI
22 Kim, S. S., M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim. 2006. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27: 1399-1409   DOI   ScienceOn
23 Son, J. H., S. R. Park, H. J. Kim, and B. H. Min. 2006. Regeneration of a cartilage tissue by in vitro culture of chondrocytes on PLGA microspheres J. Microbiol. Biotechnol. 16: 1577-1582   과학기술학회마을
24 Yoshikawa, T., H. Ohgushi, M. Akahane, S. Tamai, and K. Ichijima. 1998. Analysis of gene expression in osteogenic cultured marrow/hydroxyapatite construct implanted at ectopic sites: A comparison with the osteogenic ability of cancellous bone. J. Biomed. Mater. Res. 41: 568-573   DOI   ScienceOn
25 Ohgushi, H., M. Okumura, S. Tamai, E. C. Shors, and A. I. Caplan. 1990. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate. J. Biomed. Mater. Res. 24: 1563-1570   DOI
26 Quarto, R., M. Mastrogiacomo, R. Cancedda, S. M. Kutepov, V. Mukhachev, A. Lavroukov, E. Kon, and M. Marcacci. 2001. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344: 385-386   DOI   ScienceOn
27 Petite, H., V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin. 2000. Tissue-engineered bone regeneration. Nat. Biotechnol. 18: 959-963   DOI   ScienceOn
28 Kim, S. S., M. S. Park, C. Y. Choi, and B. S. Kim. 2006. Accelerated bone-like apatite growth on porous polymer/ ceramic composite scaffolds in vitro. Tissue Eng. 12: 2997-3006   DOI   ScienceOn