• Title/Summary/Keyword: Human exposure pathway

Search Result 122, Processing Time 0.023 seconds

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

Quantiflcation of Human Exposure and Analysis of PCBs in Contaminated Some Site (특정지역에서 토양중 PCB의 분석과 인체노출량평가)

  • 이효민;박송자;김명수;윤은경;최시내;김선태;박종세
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.49-54
    • /
    • 1997
  • PCBs are classified as B2 (Probable human carcinogen) based on the induction of hepatocellular carcinomas in rats and mice from IRIS (Integrated Risk Information System). About 20 years ago, PCBs were phased out for electrical use in Korea, but PCBs were continuously used in the other field. Lately, there has been increasing concern on possible effects of contaminated soil to the other environment and human health. The purpose of this study is to determine PCBs level in soil at some site and to assess the human exposure doses according to exposure routes for people living within sites which expected to be exposed to PCBs. Pollution level of PCBs on the site was monitored using gas liquid chromatography. To assess the transport of PCBs in soil to plant and to air, various transfer factors(diffusion coefficient, bioconcentration factor etc.) were considered in simple calculations. To calculate the residential exposure doses by routes, some equations were considered using assumption value, which define inhalation, ingestion (soil, plant) and derreal uptake pathway. Computated results will be used as risk assessment information for human health evaluation on contaminated soil.

  • PDF

Health Risk Assessment of Lead Exposure through Multi-pathways in Korea (납의 다경로 노출에 의한 건강위해성평가 : 우리 나라 일부 지역 성인들을 대상으로)

  • Chung, Yong;Hwang, Man-Sik;Yang, Ji-Yeon;Jo, Seong-Joon
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.203-216
    • /
    • 1999
  • This paper describes a set of multi-pathway models for estimating health risk to lead. The models link concentrations of an environmental contaminant (lead) in air, water and food to human exposure through inhalation, ingestion, and dietary routes. Exposure is used as the foundation for predicting risk of health detriment within the population. The process of estimating exposure using often limited data and extrapolating to a large diverse population requires many assumption, inferences, and simplification. This paper is divided into four section. The first section provides lead contaminant levels on obtaining environmental concentration of air, tap water, and foods. The second section provides a discussion of exposure parameters and uncertainty associated predicting human health risk of contaminants. The third and fourth section illustrate lifetime average daily exposure (LADE) and excess cancer risk (ECR) based on exposure parameters. The relationship between concentration of lead in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). The calculation of LADE and ECR is carried out using Monte-Carlo simulation with probability density function of exposure parameters. Examination of the result reveals that, for lead exposure, ingestion (food) is the dominant route of exposure rather than inhalation (air), and ingestion (tap eater).

  • PDF

Estimating Human Exposure to Benzo(a)pyrene through Multimedia/Multiroute Exposure Scenario (다매체/다경로 노출을 고려한 benzo(a)pyrene의 총 인체 노출량 예측)

  • Moon Ji Young;Yang Ji Yeon;Lim Young Wook;Park Seong Eun;Shin Dong Chun
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.255-269
    • /
    • 2003
  • The objective of this study was to estimate human exposure to benzo (a)pyrene through multimedia/multi-pathway exposure scenario. The human exposure scenario for benzo(a)pyrene was consisted of 12 multiple exposure pathways, and the multipathway human exposure model based on this scenario constituted. In this study, the multipathway human exposure model was used to estimate the concentrations in the exposure contact media, human intake factors and lifetime average daily dose (LAD $D_{model}$) of benzo(a)pyrene in the environment. Sensitivity analysis was performed to identify the important parameters and Monte-Carlo simulation was undertaken to examine the uncertainty of the model. The total LAD $D_{model}$ was estimated to be 5.52${\times}$10$^{-7}$ mg/kg-day (2.06${\times}$10$^{-7}$ -8.65${\times}$10$^{-7}$ mg/kg-day) using the multipathway human exposure model. The inhalation dose accounted for 78% of the total LADD, whereas ingestion and dermal contact intake accounted for 20.2% and 1.8% of the total exposure, respectively. Based on the sensitivity analysis, the most significant contributing input parameter was benzo (a)pyrene concentration of ambient air. Consequently, exposure via inhalation in outdoor/indoor air was the highest compared with the exposure via other medium/pathways.

Human Milk Microbiota: A Review (모유 미생물총에 대한 고찰)

  • Lee, Ju-Eun;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.15-26
    • /
    • 2019
  • A common belief is that human milk is sterile. However, the development of culture-independent molecular methods, especially Next Generation Sequencing, has revealed that human milk harbors diverse and rich bacterial communities. Although studies aimed at characterizing the microbiota of human milk have produced different findings, Staphylococcus and Streptococcus are presumed to be normal members of the microbiota. Factors that influence variation in the microbiota are unclear; however, the postpartum time, route of delivery, maternal obesity, and health status may be influential. The origin of the microbiota is a hotly debated topic. Human milk bacteria are thought to be introduced through bacterial exposure of the mammary duct during breast feeding and/or the entero-mammary pathway from the maternal gastrointestinal tract. Although the exact mechanism related to the entero-mammary pathway is unknown, it is presumed that bacteria penetrate the intestinal epithelium and then migrate to the mammary gland, dendritic cells, and macrophages. In this review, various relevant studies are introduced.

Current Exposure Status to Cadmium through Multimedia Pathway in Korea

  • Lee, Hyo-Min;Yoon, Eun-Kyung;Lee, Gun-Young;Kim, Hyun-Jung;Yang, Ji-Sun;Yang, Ki-Hwa;Choi, Kyung-Hee;Kim, Sung-Whan
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.167.1-167.1
    • /
    • 2003
  • The human exposure level of cadmium can be varied by environmental level of cadmium and individual life style. This study was conducted to estimate current exposure of cadmium using up-to date in Korea. The exposure estimates were intended to representative of the general adult group with 60kg. This study quantified human exposure level of cadmium through food, air and soil except water because domestic all data was not detected. (omitted)

  • PDF

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

Stabilization of fluorine in soil using calcium hydroxide and its potential human health risk

  • Jeong, Seulki;Kim, Doyoung;Yoon, Hye-On
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.654-661
    • /
    • 2019
  • This study assessed the stabilization of fluorine (F)-contaminated soil using calcium hydroxide (Ca(OH)2) and the consequent changes in human health risk. The bioavailable F decreased to 3.5%, (i.e., 57.9 ± 1.27 mg/kg in 6% Ca(OH)2-treated soil sample) from 43.0%, (i.e., 711 ± 23.4 mg/kg in control soil sample). This resulted from the conversion of water-soluble F to stable calcium fluoride, which was confirmed by XRD spectrometry. Soil ingestion, inhalation of fugitive dust from soil, and water ingestion were selected as exposure pathways for human health risk assessment. Non-carcinogenic risks of F in soils reduced to less than 1.0 after stabilization, ranging from 4.2 to 0.34 for child and from 3.0 to 0.25 for adult. Contaminated water ingestion owing to the leaching of F from soil to groundwater was considered as a major exposure pathway. The risks through soil ingestion and inhalation of fugitive dust from soil were insignificant both before and after stabilization, although F concentration exceeded the Korean soil regulatory level before stabilization. Our data suggested that substantial risk to human health owing to various potential exposure pathways could be addressed by managing F present in soil.

Prediction of Inhalation Exposure to Benzene by Activity Stage Using a Caltox Model at the Daesan Petrochemical Complex in South Korea (CalTOX 모델을 이용한 대산 석유화학단지의 활동단계에 따른 벤젠 흡입 노출평가)

  • Lee, Jinheon;Lee, Minwoo;Park, Changyong;Park, Sanghyun;Song, Youngho;Kim, Ok;Shin, Jihun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.151-158
    • /
    • 2022
  • Background: Chemical emissions in the environment have rapidly increased with the accelerated industrialization taking place in recent decades. Residents of industrial complexes are concerned about the health risks posed by chemical exposure. Objectives: This study was performed to suggest modeling methods that take into account multimedia and multi-pathways in human exposure and risk assessment. Methods: The concentration of benzene emitted at industrial complexes in Daesan, South Korea and the exposure of local residents was estimated using the Caltox model. The amount of human exposure based on inhalation rate was stochastically predicted for various activity stages such as resting, normal walking, and fast walking. Results: The coefficient of determination (R2) for the CalTOX model efficiency was 0.9676 and the root-mean-square error (RMSE) was 0.0035, indicating good agreement between predictions and measurements. However, the efficiency index (EI) appeared to be a negative value at -1094.4997. This can be explained as the atmospheric concentration being calculated only from the emissions from industrial facilities in the study area. In the human exposure assessment, the higher the inhalation rate percentile value, the higher the inhalation rate and lifetime average daily dose (LADD) at each activity step. Conclusions: Prediction using the Caltox model might be appropriate for comparing with actual measurements. The LADD of females was higher ratio with an increase in inhalation rate than those of males. This finding would imply that females may be more susceptible to benzene as their inhalation rate increases.