• Title/Summary/Keyword: Human cell line

Search Result 1,793, Processing Time 0.035 seconds

Establishment of Highly Tumorigenic Human Gastric Carcinoma Cell Lines from Xenograft Tumors in Mice

  • Song, Kyung-A;Park, Jihyun;Kim, Ha-Jung;Kang, Myung Soo;Kim, Sun Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.238-250
    • /
    • 2017
  • Patient's primary tumor-derived tumor cell lines likely represent ideal tools for human tumor biology in vitro and in vivo. Here, we describe eight human gastric carcinoma cell lines derived from established tumors in vivo upon subcutaneous transplantation of primary gastric carcinoma specimens in BALB/c nude mice. These xenografted gastric tumor cell lines (GTX) displayed close similarity with primary gastric tumor tissues in their in vivo growth pattern and genomic alterations. GTX-085 cells were resistant to cisplatin, while GTX-087 was the most sensitive cell line. GTX-085 was the only cell line showing a metastatic potential. Epithelial cell adhesion molecule (EPCAM) expression was especially strong in all tissue samples, as well as in cell cultures. GTX-139, the largest tumor graft obtained after injection, displayed distinct expression of CD44v6, fibroblast growth factor receptor 2 (FGFR2), and prominin 1 (PROM1, also known as CD133). In summary, we established eight xenograft gastric cancer cell lines from gastric cancer patient tissues, with their histological and molecular features consistent with those of the primary tumors. The established GTX cell lines will enable future studies of their responses to various treatments for gastric cancer.

Isolation of RNA Aptamers Targeting HER-2-overexpressing Breast Cancer Cells Using Cell-SELEX

  • Kang, Hye-Suk;Huh, Yong-Min;Kim, So-Youn;Lee, Dong-ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1827-1831
    • /
    • 2009
  • Ligand molecules that can recognize and interact with cancer cell surface marker proteins with high affinity and specificity should greatly aid the development of novel cancer diagnostics and therapeutics. HER-2/ErbB2/Neu (HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves as both a useful biomarker and a therapeutic target for breast cancer. In this study, we aimed to isolate RNA aptamers that specifically bind to a HER-2-overexpressing human breast cancer cell line, SK-BR-3, using Cell-SELEX strategy. The selected aptamers showed strong affinity to SK-BR-3, but not to MDAMB- 231, a HER-2-underexpressing breast cancer cell line. In addition, we confirmed the specific targeting of HER-2 receptor by aptamers using an unrelated mouse cell line overexpressing human HER-2 receptor. The HER-2-targeting RNA aptamers could become a useful reagent for the development of breast cancer diagnostics and therapeutics.

Fungal Taxol Extracted from Cladosporium oxysporum Induces Apoptosis in T47D Human Breast Cancer Cell Line

  • Raj, Kathamuthu Gokul;Sambantham, Shanmugam;Manikanadan, Ramar;Arulvasu, Chinnansamy;Pandi, Mohan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6627-6632
    • /
    • 2014
  • Purpose: The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. Materials and Methods: Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. Results: Our results showed inhibition of T47D cell proliferation with an $IC_{50}$ value of $2.5{\mu}M/ml$ after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-${\kappa}B$, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. Conclusions: We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.

Engineering Human-like Sialylation in CHO Cells Producing hCTLA4-Ig by Overexpressing α2,6-Sialyltransferase (α2,6-Sialyltransferase 과발현을 통한 인간형 시알산 부가 hCTLA4-Ig 생산 CHO 세포주 제작)

  • Lim, Jin-Hyuk;Cha, Hyun-Myoung;Park, Heajin;Kim, Ha Hyung;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • Sialylation is important in producing therapeutic proteins such as antibody, cytokine and fusion protein. Thus, enhancement of sialylation is usually performed in CHO cell cultures. ${\alpha}2,6$-Sialyltransferase (ST), which plays a key role in the attachment of ${\alpha}2,6-sialic$ acid, is present in human cells but not in Chinese hamster ovary (CHO) cells. Overexpression of ${\alpha}2,6-ST$ can be used for enhancing the degree of sialylation and achieving human-like glycosylation. In this study, we constructed CHO cells producing human cytotoxic T-lymphocyte antigen4-immunoglobulin (hCTLA4-Ig) as well as ${\alpha}2,6-ST$. Transfected CHO cells were selected using G418 and stable cell line was established. Profiles of viable cell density and hCTLA4-Ig titer in an overexpressed cell line were similar to those of a wild-type cell line. It was confirmed that the total amount of sialic acid was increased and ${\alpha}2,6-sialic$ acid was attached to the terminal residues of N-glycan of hCTLA4-Ig by ESI-LC-MS. Compared to 100% of ${\alpha}2,3-sialic$ acid in wild type cells, 70.9% of total sialylated N-glycans were composed of ${\alpha}2,6-sialic$ acid in transfected cells. In conclusion, overexpression of ${\alpha}2,6-ST$ in CHO cells led to the increase of both the amount of total sialylated N-glycan and the content of ${\alpha}2,6-sialic$ acid, which is more resemble to human-like structure of glycosylation.

Effects of Danchun-hwan on Oxidative Damage of Human Neural Cell (단천환이 사람신경세포의 산화적 손상에 미치는 영향)

  • 한상혁;김명선;이지현;김도환;나영훈;조광호;박래길;문병순
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.183-192
    • /
    • 2000
  • Objectives : The present study was carried out to investigate the effects of Danchun-hwan(DCH) on the peroxynitrite-induced neural cell death in human neuroblastoma cell line, SH-SY5Y. Methods : The cultured cells were pretreated with DCH and exposed to 3-morpholinosydnonimine(SIN-1) that simultaneously generates NO and superoxide, thus possibly forming peroxynitrite. The cell damage was assessed by using MTT assay and crystal violet staining. Results : Exposure of the cells to SIN-1 for 24hr induced 75% apoptotic cell death, as evaluated by the occurrence of morphological nuclear changes characteristic of apoptosis using 4', 6-diamidino-2-phenylinole(DAPI). However, pretreatment of SH-SY5Y with the water extracts of DCH, inhibited the apoptotic cell death in a dose-dependent manner. DCH also inhibited SIN-1-induced apoptotic caspase 3-like protease activity in a dose-dependent manner. DCH recovered the depleted glutathione levels by SIN-1. Conclusions : Taken together, it is suggested that DCH protected human neuroblastoma cell line, SH-SY5Y, from the free radical injury mediated by peroxynitrite by a mechanism of elevating antioxidant, GSH.

  • PDF

Design and Synthesis of 3-(3-Chloro-4-substituted phenyl)-4-(pyridin-4-yl)-1Hpyrazole- 1-carboxamide Derivatives and Their Antiproliferative Activity Against Melanoma Cell Line

  • El-Gamal, Mohammed I.;Oh, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.821-828
    • /
    • 2011
  • Design and synthesis of new 3,4-diarylpyrazole-1-carboxamide derivatives are described. Their antiproliferative activity against A375 human melanoma cell line was tested and the effect of substituents on the diarylpyrazole scaffold was investigated. The pharmacological results indicated that most of the synthesized compounds showed moderate activity against A375, compared with Sorafenib. On the other hand, compounds Ia, Ie, IIb, and IIh were more potent than Sorafenib. In addition, compound IIa was equipotent to Sorafenib. Among all of these derivatives, compound IIb which has diethylamino and phenolic moieties showed the most potent antiproliferative activity against A375 human melanoma cell line. Virtual screening was carried out through docking of the most potent compound IIb into the domain of V600E-b-Raf and the binding mode was studied.

Synthesis of New 6-(4-Fluorophenyl)-5-(2-substituted pyrimidin-4-yl)imidazo[2,1-b] thiazole Derivatives and their Antiproliferative Activity against Melanoma Cell Line

  • Park, Jin-Hun;Oh, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2854-2860
    • /
    • 2010
  • Synthesis of a new series of pyrimidinyl-imidazo[2,1-b]thiazole derivatives is described. Their antiproliferative activity against A375 human melanoma cell line was tested and the effect of substituents on the pyrimidinyl ring side chain was investigated. The biological results indicated that most of the newly synthesized compounds showed moderate activity against A375, compared with Sorafenib. Among all of these derivatives, the cyclic sulfamide derivatives IIIa, IIIb, and IIIe showed the most potent antiproliferative activity against A375 human melanoma cell line. The IC50 values of compounds IIIa,b were in nanomolar scale. In addition, compound IIIe ($IC_{50}=1.9\;{\mu}M$) also demonstrated more potent antiproliferative activity compared with Sorafenib ($IC_{50}=5.6\;{\mu}M$).

Synthesis of New Pyrimidinylaminobenzene Derivatives and Their Antiproliferative Activities against Melanoma Cell Line

  • Kim, Hee Jin;Oh, Chang-Hyun;Yoo, Kyung Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2311-2316
    • /
    • 2013
  • A series of new diarylamide and diarylurea derivatives possessing pyrimidinylaminobenzene scaffold was synthesized. Their in vitro antiproliferative activities were tested against A375P human melanoma cell line. Among them, compounds 1a-c, k and 2b-d, f, g, j, l showed superior potencies against A375P human melanoma cell line to Sorafenib. In particular, compound 2f possessing 3-fluoro-5-trifluoromethyl moiety exhibited the highest potency with $IC_{50}$ value in nanomolar scale.

Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과)

  • Park, Chungmu;Yoon, Hyunseo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

Differential Gene Expression Analysis in K562 Human Leukemia Cell Line Treated with Benzene

  • Choi, Sul-Ji;Kim, Ji-Young;Moon, Jai-Dong;Baek, Hee-Jo;Kook, Hoon;Seo, Sang-Beom
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.43-48
    • /
    • 2011
  • Even though exposure to benzene has been linked to a variety of cancers including leukemia, the detailed molecular mechanisms relevant to benzene-induced carcinogenesis remain to be clearly elucidated. In this study, we evaluated the effects of benzene on differential gene expression in a leukemia cell line. The K562 leukemia cell line used in this study was cultured for 3 h with 10 mM benzene and RNA was extracted. To analyze the gene expression profiles, a 41,000 human whole genome chip was employed for cDNA microarray analysis. We initially identified 6,562 genes whose expression was altered by benzene treatment. Among these, 3,395 genes were upregulated and 3,167 genes were downregulated by more than 2-fold, respectively. The results of functional classification showed that the identified genes were involved in biological pathways including transcription, cell proliferation, the cell cycle, and apoptosis. These gene expression profiles should provide us with further insights into the molecular mechanisms underlying benzene-induced carcinogenesis, including leukemia.