DOI QR코드

DOI QR Code

Differential Gene Expression Analysis in K562 Human Leukemia Cell Line Treated with Benzene

  • Choi, Sul-Ji (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Kim, Ji-Young (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Moon, Jai-Dong (Department of Occupational and Environmental Medicine, Chonnam National University Hwasun Hospital) ;
  • Baek, Hee-Jo (Department of Pediatrics, Chonnam National University Hwasun Hospital) ;
  • Kook, Hoon (Department of Pediatrics, Chonnam National University Hwasun Hospital) ;
  • Seo, Sang-Beom (Department of Life Science, College of Natural Science, Chung-Ang University)
  • Received : 2011.01.19
  • Accepted : 2011.02.10
  • Published : 2011.03.01

Abstract

Even though exposure to benzene has been linked to a variety of cancers including leukemia, the detailed molecular mechanisms relevant to benzene-induced carcinogenesis remain to be clearly elucidated. In this study, we evaluated the effects of benzene on differential gene expression in a leukemia cell line. The K562 leukemia cell line used in this study was cultured for 3 h with 10 mM benzene and RNA was extracted. To analyze the gene expression profiles, a 41,000 human whole genome chip was employed for cDNA microarray analysis. We initially identified 6,562 genes whose expression was altered by benzene treatment. Among these, 3,395 genes were upregulated and 3,167 genes were downregulated by more than 2-fold, respectively. The results of functional classification showed that the identified genes were involved in biological pathways including transcription, cell proliferation, the cell cycle, and apoptosis. These gene expression profiles should provide us with further insights into the molecular mechanisms underlying benzene-induced carcinogenesis, including leukemia.

Keywords

References

  1. Garcia-Domingo, D., Leonardo, E., Grandien, A., Martinez, P., Albar, J.P., Izpisua-Belmonte, J.C. and Martinez, A.C. (1999). DIO-1 is a gene involved in onset of apoptosis in vitro, whose misexpression disrupts limb development. Proc. Natl. Acad. Sci. USA, 96, 7992-7997. https://doi.org/10.1073/pnas.96.14.7992
  2. Gutierrez, A., Sanda, T., Ma, W., Zhang, J., Grebliunaite, R., Dahlberg, S., Neuberg, D., Protopopov, A., Winter, S.S., Larson, R.S., Borowitz, M.J., Silverman, L.B., Chin, L., Hunger, S.P., Jamieson, C., Sallan, S.E. and Look, A.T. (2010). Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood, 115, 2845-2851. https://doi.org/10.1182/blood-2009-07-234377
  3. Hsu, S.Y., Kaipia, A., Zhu, L. and Hsueh, A.J. (1997). Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol. Endocrinol., 11, 1858-1867. https://doi.org/10.1210/me.11.12.1858
  4. Huff, J. (1999). Long-term chemical carcinogenesis bioassays predict human cancer hazards. Issues, controversies, and uncertainties. Ann. NY. Acad. Sci., 895, 56-79. https://doi.org/10.1111/j.1749-6632.1999.tb08077.x
  5. Joo, W.A., Kang, M.J., Son, W.K., Lee, H.J., Lee, D.Y., Lee, E. and Kim, C.W. (2003). Monitoring protein expression by proteomics: human plasma exposed to benzene. Proteomics, 3, 2402-2411. https://doi.org/10.1002/pmic.200300616
  6. Kozma, S.C. and Thomas, G. (2002). Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays, 24, 65-71. https://doi.org/10.1002/bies.10031
  7. Kuo, M.L., Shiah, S.G., Wang, C.J. and Chuang, S.E. (1999). Suppression of apoptosis by Bcl-2 to enhance benzene metabolitesinduced oxidative DNA damage and mutagenesis: A possible mechanism of carcinogenesis. Mol. Pharmacol., 55, 894-901.
  8. Lan, Q., Zhang, L., Li, G., Vermeulen, R., Weinberg, R.S., Dosemeci, M., Rappaport, S.M., Shen, M., Alter, B.P., Wu, Y., Kopp, W., Waidyanatha, S., Rabkin, C., Guo, W., Chanock, S., Hayes, R.B., Linet, M., Kim, S., Yin, S., Rothman, N. and Smith, M.T. (2004). Hematotoxicity in workers exposed to low levels of benzene. Science, 306, 1774-1776. https://doi.org/10.1126/science.1102443
  9. Lord, K.A., Abdollahi, A., Hoffman-Liebermann, B. and Liebermann, D.A. (1993). Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol. Cell. Biol., 13, 841-851. https://doi.org/10.1128/MCB.13.2.841
  10. Lozzio, C.B. and Lozzio, B.B. (1975). Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 45, 321-334.
  11. Martiny-Baron, G. and Fabbro, D. (2007). Classical PKC isoforms in cancer. Pharmacol. Res., 55, 477-486. https://doi.org/10.1016/j.phrs.2007.04.001
  12. Oh, Y.M., Kwon, Y.E., Kim, J.M., Bae, S.J., Lee, B.K., Yoo, S.J., Chung, C.H., Deshaies, R.J. and Seol, J.H. (2009). Chfr is linked to tumour metastasis through the downregulation of HDAC1. Nat. Cell. Biol., 11, 295-302. https://doi.org/10.1038/ncb1837
  13. Qing, J., Du, X., Chen, Y., Chan, P., Li, H., Wu, P., Marsters, S., Stawicki, S., Tien, J., Totpal, K., Ross, S., Stinson, S., Dornan, D., French, D., Wang, Q.R., Stephan, J.P., Wu, Y., Wiesmann, C. and Ashkenazi, A. (2009). Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J. Clin. Invest., 119, 1216-1229. https://doi.org/10.1172/JCI38017
  14. Redaelli, A., Stephens, J.M., Laskin, B.L., Pashos, C.L. and Botteman, M.F. (2003). The burden and outcomes associated with four leukemias: AML, ALL, CLL and CML. Expert. Rev. Anticancer Ther., 3, 311-329. https://doi.org/10.1586/14737140.3.3.311
  15. Schimmer, A.D. and Dalili, S. (2005). Targeting the IAP family of caspase inhibitors as an emerging therapeutic strategy. Hematology Am. Soc. Hematol. Educ. Program, 215-219.
  16. Smith, M.T. (1996). The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ. Health Perspect., 104 Suppl 6, 1219-1225. https://doi.org/10.2307/3433166
  17. Snyder, C.A., Goldstein, B.D., Sellakumar, A., Bromberg, I., Laskin, S. and Albert, R.E. (1982). Toxicity of chronic benzene inhalation: CD-1 mice exposed to 300 ppm. Bull. Environ. Contam. Toxicol., 29, 385-391. https://doi.org/10.1007/BF01605600
  18. Subramaniam, M., Hawse, J. R., Rajamannan, N.M., Ingle, J.N. and Spelsberg, T.C. (2010). Functional role of KLF10 in multiple disease processes. Biofactors, 36, 8-18.
  19. Suzuki, T., Kiyokawa, N., Taguchi, T., Sekino, T., Katagiri, Y.U. and Fujimoto, J. (2001). CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system. J. Immunol., 166, 5567-5577. https://doi.org/10.4049/jimmunol.166.9.5567
  20. Tomita, M., Semenza, G.L., Michiels, C., Matsuda, T., Uchihara, J.N., Okudaira, T., Tanaka, Y., Taira, N., Ohshiro, K. and Mori, N. (2007). Activation of hypoxia-inducible factor 1 in human Tcell leukaemia virus type 1-infected cell lines and primary adult T-cell leukaemia cells. Biochem. J., 406, 317-323. https://doi.org/10.1042/BJ20070286
  21. Zhang, L., Rothman, N., Wang, Y., Hayes, R.B., Yin, S., Titenko-Holland, N., Dosemeci, M., Wang, Y.Z., Kolachana, P., Lu, W., Xi, L., Li, G.L. and Smith, M.T. (1999). Benzene increases aneuploidy in the lymphocytes of exposed workers: a comparison of data obtained by fluorescence in situ hybridization in interphase and metaphase cells. Environ. Mol. Mutagen., 34, 260-268. https://doi.org/10.1002/(SICI)1098-2280(1999)34:4<260::AID-EM6>3.0.CO;2-P