Even though various types of sensors are being used for security applications, radar sensors are being suggested as an alternative due to the privacy issues. Among those radar sensors, PD radar has high-complexity receiver, but, FMCW radar requires fewer resources. However, FMCW has disadvantage from the use of 2D-FFT which increases the complexity, and it is difficult to distinguish people from objects those are stationary. In this paper, we present the design and the implementation results of the radar signal processor (RSP) that can distinguish between people and object by respiration measurement using phase estimation without 2D-FFT. The proposed RSP is designed with Verilog-HDL and is implemented on FPGA device. It was confirmed that the proposed RSP includes 6,425 LUT, 4,243 register, and 12,288 memory bits with 92.1% accuracy for target's breathing status.
Kim, Jin-Hyeok;Lee, Tae-Hui;Han, Yamin;Byun, Heejung
KIPS Transactions on Computer and Communication Systems
/
v.10
no.4
/
pp.117-122
/
2021
In recent years, human damage and loss of money due to various disasters such as typhoons, earthquakes, forest fires, landslides, and wars are steadily occurring, and a lot of manpower and funds are required to prevent and recover them. In this paper, we designed and developed a disaster drone system based on artificial intelligence in order to monitor these various disaster situations in advance and to quickly recognize and respond to disaster occurrence. In this study, multiple disaster drones are used in areas where it is difficult for humans to monitor, and each drone performs an efficient search with an optimal path by applying a deep learning-based optimal path algorithm. In addition, in order to solve the problem of insufficient battery capacity, which is a fundamental problem of drones, the optimal route of each drone is determined using Ant Colony Optimization (ACO) technology. In order to implement the proposed system, it was applied to a forest fire situation among various disaster situations, and a forest fire map was created based on the transmitted data, and a forest fire map was visually shown to the fire fighters dispatched by a drone equipped with a beam projector. In the proposed system, multiple drones can detect a disaster situation in a short time by simultaneously performing optimal path search and object recognition. Based on this research, it can be used to build disaster drone infrastructure, search for victims (sea, mountain, jungle), self-extinguishing fire using drones, and security drones.
In order to prepare basic data for research on the protection of emotional workers in Pyeongtaek with the support of Pyeongtaek City, this study conducted a survey centered on 104 counselors classified as emotional laborers. Based on the results of the survey centered on 104 emotional workers, basic research data on the difficulties of emotional workers can be prepared, and protection methods for emotional workers who are currently interested in each local government can be found. As a result of selecting a sample centering on counselors in Pyeongtaek City for a survey on the actual condition of emotional workers, and conducting a survey based on the selected samples, it was found that emotional workers did not find their rights to human rights and were not protected even in the workplace. Currently, a bill to protect emotional workers is being announced, but it is not protected, so it is confirmed that system improvement is necessary. This study focused on 104 items that were significant through pre-processing among the recovered questionnaires. It was analyzed using SPSS, R, and it was confirmed that there is a need for a regulation that can provide an institutional device in Pyeongtaek City. In this study, it is judged that it is necessary to prepare a protective device for emotional workers by selecting more samples corresponding to the occupational group of emotional workers.
Magnetic resonance imaging (MRI) is a key technology that has been seeing increasing use in studying the structural and functional innerworkings of the brain. Analyzing the variability of brain connectome through tractography analysis has been used to increase our understanding of disease pathology in humans. However, there lacks standardization of analysis methods for small animals such as mice, and lacks scientific consensus in regard to accurate preprocessing strategies and atlas-based neuroinformatics for images. In addition, it is difficult to acquire high resolution images for mice due to how significantly smaller a mouse brain is compared to that of humans. In this study, we present an Allen Mouse Brain Atlas-based image data analysis pipeline for structural connectivity analysis involving structural region segmentation using mouse brain structural images and diffusion tensor images. Each analysis method enabled the analysis of mouse brain image data using reliable software that has already been verified with human and mouse image data. In addition, the pipeline presented in this study is optimized for users to efficiently process data by organizing functions necessary for mouse tractography among complex analysis processes and various functions.
Biodiversity informatics applies information technology methods in organizing, accessing, visualizing, and analyzing primary biodiversity data and quantitative data management through the scientific names of accepted names and synonyms. We reviewed the GBIF data published by China, Japan, Taiwan, and internal institutes, such as NIBR, NIE, and KNA of the Republic of Korea, and assessed data in diverse aspects of data quality using BRAHMS software. Most data from four Asian countries have quality problems with the lack of data consistency and missing information on georeferenced data, collectors, collection date, and place names (gazetteers) or other invalid data forms. The major problem is that biodiversity management institutions in East Asia are using unstructured databases and simple spreadsheet-type data. Owing to the nature of the biodiversity information, if data relationships are not structured, it would be impossible to secure the data integrity of scientific names, human names, geographical names, literature, and ecological information. For data quality, it is essential to build data integrity for database management and training systems for taxonomists who are continuous data managers to correct errors. Thus, publishers in East Asia play an essential role not only in using specialized software to manage biodiversity data but also in developing structured databases and ensuring their integration and value within biodiversity publishing platforms.
Journal of the Society of Cosmetic Scientists of Korea
/
v.47
no.2
/
pp.163-170
/
2021
This study was conducted to create a technology to remove acne bacteria with human-friendly materials. First, the Cutibacterium acnes (C. acnes) were adsorbed to the mica disc to grow, and then the biofilm was checked through an atomic microscope to see if the biofilm had grown. Based on the topographic image, the shape changed round, the size was 17% longer on average, and the phase value of the resonance frequency separating materials was observed as a single value, the biofilm grown by covering the extracellular polymeric substrate (EPS). As a result of processing 50 mM of amino acids in the matured biofilm, the concentration of C. acnes decreased when valine, serine, arginine and leucine were treated. Scanning with nanoindentation and AFM contact modes confirmed that the hardness of biofilms treated with Valine (Val) increased. This indicates that an AFM tip measured cell which may have more solidity than that of EPS. The experiment of fluorescent tagged to EPS displays an existence of EPS at the condition of 10 mM Val, but an inhibition of growth of EPS at the 50 mM Val. Number of C. acnes was also reduced above 10 mM of Val. Weak adhesion of biofilm generated from an inhibition of EPS formation seems to induce decrease of C. acnes. Accordingly, we elucidated that Val has an efficiency which eliminates C. acnes by approach of an inhibition of EPS.
KIPS Transactions on Software and Data Engineering
/
v.11
no.3
/
pp.141-148
/
2022
Recently, reinforcement learning combined with deep neural network technology has achieved remarkable success in various fields such as board games such as Go and chess, computer games such as Atari and StartCraft, and robot object manipulation tasks. However, such deep reinforcement learning describes states, actions, and policies in vector representation. Therefore, the existing deep reinforcement learning has some limitations in generality and interpretability of the learned policy, and it is difficult to effectively incorporate domain knowledge into policy learning. On the other hand, dNL-RRL, a new relational reinforcement learning framework proposed to solve these problems, uses a kind of vector representation for sensor input data and lower-level motion control as in the existing deep reinforcement learning. However, for states, actions, and learned policies, It uses a relational representation with logic predicates and rules. In this paper, we present dNL-RRL-based policy learning for transportation mobile robots in a manufacturing environment. In particular, this study proposes a effective method to utilize the prior domain knowledge of human experts to improve the efficiency of relational reinforcement learning. Through various experiments, we demonstrate the performance improvement of the relational reinforcement learning by using domain knowledge as proposed in this paper.
Since 2019, research on microplastics has been actively conducted around the world, so analyzing the differences between domestic and foreign microplastics research can be a milestone in establishing the direction of domestic research. In this study, microplastic papers from KCI and WoS were extracted and the differences between domestic and foreign studies were analyzed using a network analysis methodology based on big data such as author keyword co-occurrence word analysis, thesis co-citation analysis, and author co-citation analysis. As a result of the analysis, the analysis of the research topic confirmed that studies that could affect the human body and the treatment of microplastics in daily life were additionally needed in Korea. In the analysis of the depth of thesis citation that examines the quality of research, it was found that Korea was still insufficient at 2.25 overseas and 1.39 in Korea. In the analysis of the composition of the joint research front, where various researchers participate and share information, 3 out of 22 clusters in Korea are Star type. In the case of overseas, all 19 clusters have a mesh structure, so it was confirmed that information flow and sharing were insufficient in specific research fields in Korea. These research results confirmed the need to expand the research topic of microplastics, improve the quality of research, and improve the research promotion system in which various researchers participate. In addition, if the automation program is developed based on topic modeling, it will be possible to build a system capable of real-time analysis.
One of the most noteworthy topics in recent corporate management is ESG(Environmental, Social, Governance). Although there are many companies that have declared ESG management, KT has declared full-fledged ESG management in 2021 and is sharing its sustainable management strategy with stakeholders. In addition, KT is strengthening ESG management by issuing ESG bonds for the first time in the domestic ICT industry. At a time when the information technology industry became more important due to COVID-19, this study attempted to examine KT's ESG management goals and strategies by dividing them into environmental, social, and governance areas. KT was aiming to achieve environmental integrity through 'environmental management', 'green competence', 'energy resources', and 'eco-friendly projects' in the environmental field. In addition, in the social field, genuine creating social value was pursued through 'social contribution', 'co-growth', and 'human rights management'. Finally, in the governance area, it was aiming for a transparent corporate management system to pursue economic reliability through 'ethics and compliance' and 'risk management'. In particular, KT was promoting its own ESG management by promoting strategies to solve environmental and social problems using AI and BigData technologies based on the characteristics of a digital platform company. This study aims to derive implications for ESG strategy establishment and ESG management development direction through KT's ESG management case in relation to ESG management, which has emerged as a hot topic.
Information security companies were established in earnest from the mid-late 1990s to early 2000s, far shorter than other national key industries. Nevertheless, the information security industry has made rapid progress. It is expected that the proportion of the information security industry will increase rapidly with the development of advanced technology along with the 4th industrial revolution. As COVID-19, which occurred at the end of 2019, spreads around the world in 2020, non-face-to-face services and digital transformation are accelerating, and cyber threats to users are also increasing. However, there are limitations in responding to new Cyber Security threats due to the shortage of information protection manpower, insufficient security capabilities of domestic companies, and the narrow domestic information protection market. This study examines the external environmental factors of information security companies such as government information protection system operation, government influence, government support, partnership between information security companies, and internal environmental factors such as top management support, financial status, human resources, organizational capability, This study was conducted using empirical data to analyze whether it affects innovation capability and whether organizational capability and innovation capability affect financial and non-financial performance. The results of this study can be used as basic data to suggest policies and implications for information security, and to strengthen the competitiveness of the information security industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.