DOI QR코드

DOI QR Code

A Study on Inhibition of Bacterial Membrane Formation in Biofilm formed by Acne Bacteria in Valine through Property Analysis

물성 분석을 통한 Valine 의 여드름균 바이오필름 내부 세균막 형성 억제 연구

  • Received : 2021.04.07
  • Accepted : 2021.06.25
  • Published : 2021.06.30

Abstract

This study was conducted to create a technology to remove acne bacteria with human-friendly materials. First, the Cutibacterium acnes (C. acnes) were adsorbed to the mica disc to grow, and then the biofilm was checked through an atomic microscope to see if the biofilm had grown. Based on the topographic image, the shape changed round, the size was 17% longer on average, and the phase value of the resonance frequency separating materials was observed as a single value, the biofilm grown by covering the extracellular polymeric substrate (EPS). As a result of processing 50 mM of amino acids in the matured biofilm, the concentration of C. acnes decreased when valine, serine, arginine and leucine were treated. Scanning with nanoindentation and AFM contact modes confirmed that the hardness of biofilms treated with Valine (Val) increased. This indicates that an AFM tip measured cell which may have more solidity than that of EPS. The experiment of fluorescent tagged to EPS displays an existence of EPS at the condition of 10 mM Val, but an inhibition of growth of EPS at the 50 mM Val. Number of C. acnes was also reduced above 10 mM of Val. Weak adhesion of biofilm generated from an inhibition of EPS formation seems to induce decrease of C. acnes. Accordingly, we elucidated that Val has an efficiency which eliminates C. acnes by approach of an inhibition of EPS.

본 연구는 인체 친화적인 소재로 여드름균을 제거하는 기술을 만들기 위해서 진행하였다. 먼저 여드름균을 운모 디스크에 흡착시켜 생장시킨 후 원자현미경을 통해 바이오필름이 제대로 성장하였는지를 확인하였다. 이미지 상으로 형태가 둥글게 변하였고 사이즈도 평균 17% 정도 길어졌으며 물질을 구분하는 공명주파수의 위상 값이 단일값으로 관찰된 것을 볼 때 세균막이 운모디스크 전체를 덮어서 자란 바이오필름을 확인할 수 있었다. 이렇게 바이오필름을 생성시킨 여드름균에 여러 가지 아미노산 50 mM을 각각 처리하여 관찰한 결과 valine, serine, argine, leucine을 처리하였을 때 여드름균의 농도가 감소한 것을 발견하였다. 나노인덴터와 AFM 컨택모드로 스캔을 한 결과 valine (Val)을 처리한 여드름균 바이오필름의 강도가 증가해 있는 것을 확인하였다. 이것은 균을 보호하는 외곽의 세균막이 형성 억제됨으로써 세균막보다 더 높은 강도일 수 있는 균을 측정했기 때문일 수 있다. 여드름균과 Val을 처리한 여드름균에 균과 바이오필름 내부의 세균막을 볼 수 있는 형광물질을 각각 태깅하고 형광 이미지를 관찰한 결과 저농도 Val을 처리한 여드름균에서는 세균막이 관찰되었으나 10 mM 이상의 Val을 처리할 때부터 여드름균의 세균막이 형성 억제됨을 알 수 있었다. 뿐만 아니라 Val 10 mM 이상의 농도에서는 여드름균 전체의 농도도 감소하는 것을 알 수 있었다. 즉, 세균막이 형성 억제됨으로써 약화된 여드름균의 결합력에 의해서 여드름 균의 농도가 감소한 것으로 볼 수 있다. 마침내 Val의 투입은 세균막 생성을 억제함으로써 여드름균을 제거하는 효능이 있음을 확인하였다.

Keywords

References

  1. K. Iinuma, T. Sato, N. Akimoto, N. Noguchi, M. Sasatsu, S. Nishijima, I. Kurokawa, and A. Ito, Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro, J Invest Dermatol, 129(9), 2113 (2017). https://doi.org/10.1038/jid.2009.46
  2. S. Mukherjee, R. Mitra, A. Maitra, S. Gupta, S. Kumaran, A. Chakrabortty, and P. P. Majumder, Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome, Sci. Rep., 6, 36062 (2016). https://doi.org/10.1038/srep36062
  3. L. Ma, A. Guichard, Y. Cheng, J. Li, O. Qin, X. Wang, W. Liu, and Y. Tan, Sensitive scalp is associated with excessive sebum and perturbed microbiome, J. Cosmet. Dermatol., 18(3), 922 (2019). https://doi.org/10.1111/jocd.12736
  4. B. Siu-Yin. Ho, E. X. P. Ho, C. W. Chu, S. Ramasamy, M. Bigliardi-Qi, P. Florez de Sessions, and P. L. Bigliardi, Microbiome in the hair follicle of androgenetic alopecia patients, PLoS One, 14(5), e0216330 (2019). https://doi.org/10.1371/journal.pone.0216330
  5. E. Filaire, A. Dreux, C. Boutot, E. Ranouille, and J. Y. Berthon, Characteristics of healthy and androgenetic alopecia scalp microbiome: effect of Lindera strychnifolia roots extract as a natural solution for its modulation, Int. J. Cosmet. Sci., 42(6), 615 (2020). https://doi.org/10.1111/ics.12657
  6. D. Pinto, E. Sorbellini, B. Marzani, M. Rucco, G. Giuliani, and F. Rinaldi, Scalp bacterial shift in Alopecia areata, PLoS One, 14(4), e0216330 (2019). https://doi.org/10.1371/journal.pone.0216330
  7. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, 284(5418), 1318 (1999). https://doi.org/10.1126/science.284.5418.1318
  8. P. S. Stewart and J. William, Antibiotic resistance of bacteria in biofilms, Lancet, 358(9276), 135 (2001). https://doi.org/10.1016/S0140-6736(01)05321-1
  9. M. L. Sun, F. Zhao, M. Shi, X. Y. Zhang, B. C. Zhou, Y. Z. Zhang, and X. L. Chen, Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp. SM1127, Sci. Rep., 5, 18435 (2016). https://doi.org/10.1038/srep18435
  10. D. Davies, Understanding biofilm resistance to antibacterial agents, Nat Rev Drug Discov., 2(2), 114 (2003). https://doi.org/10.1038/nrd1008
  11. H. C. Flemming and J. Wingender, The biofilm matrix, Nat Rev Microbiol, 8(9), 623 (2010). https://doi.org/10.1038/nrmicro2415
  12. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nat Rev Microbiol, 2(2), 95 (2004). https://doi.org/10.1038/nrmicro821
  13. T. Mattila-Sandholm and G. Wirtanen, Biofilm formation in the industry: a review, Food Rev. Int., 8(4), 573 (1992). https://doi.org/10.1080/87559129209540953
  14. A. R. Sanderson, J. G. Leid, and D. Hunsaker, Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis, Laryngoscope, 116(7), 1121 (2006). https://doi.org/10.1097/01.mlg.0000221954.05467.54
  15. R. A. Chole and B. T. Faddis, Evidence for microbial biofilms in cholesteatomas, Arch Otolaryngol Head Neck Surg, 128(10), 1129 (2002). https://doi.org/10.1001/archotol.128.10.1129
  16. C. Guilhen, C. Forestier, and D. Balestrino, Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties, Mol. Microbiol., 105(2), 188 (2017). https://doi.org/10.1111/mmi.13698
  17. J. Valle, S. Da Re, S. Schmid, D. Skurnik, R. D'Ari, and J. M. Ghigo, The amino acid valine is secreted in continuous-flow bacterial biofilms, J. Bacteriol., 190(1), 264 (2008). https://doi.org/10.1128/JB.01405-07
  18. Y. Fu, Y. Zu, L. Chen, T. Efferth, H. Liang, Z. Liu, and W. Liu, Investigation of antibacterial activity of rosemary essential oil against Propionibacterium acnes with atomic force microscopy, Planta Med., 73(12), 1275 (2007). https://doi.org/10.1055/s-2007-981614
  19. J. H. Lim, S. H. Song, H. S. Park, J. R. Lee, and S. M. Lee, Spontaneous detachment of Streptococcus mutans biofilm by synergistic effect between zwitterion and sugar alcohol, Sci. Rep., 7, 8107 (2017). https://doi.org/10.1038/s41598-017-08558-x
  20. H. Liu, Z. Du, J. Wang, and R. Yang, Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry, Appl Environ Microbiol., 73(6), 1899 (2007). https://doi.org/10.1128/AEM.02391-06
  21. A. Sokolov and I. S. Aranson, Physical properties of collective motion in suspensions of bacteria, Phys. Rev. Lett., 109(24), 248109 (2012). https://doi.org/10.1103/physrevlett.109.248109
  22. A. C. Jahns, H. Eilers, and O. A. Alexeyev, Transcriptomic analysis of Propionibacterium acnes biofilms in vitro, Anaerobe, 42, 111 (2016). https://doi.org/10.1016/j.anaerobe.2016.10.001
  23. T. Gan, X. Gong, H. Schonherr, and G. Zhang, Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy, Biointerphases, 11(4), 041005 (2016). https://doi.org/10.1116/1.4968809
  24. I. Kolodkin-Gal, D. Romero, S. Cao, J. Clardy, R. Kolter, and R. Losick, D-amino acids trigger biofilm disassembly, Science, 328(5978), 627 (2010). https://doi.org/10.1126/science.1188628