• Title/Summary/Keyword: Human Reliability Assessment

Search Result 151, Processing Time 0.019 seconds

Human Reliability Analysis for Risk Assessment of Nuclear Power Plants (원자력발전소 위험도 평가를 위한 인간신뢰도분석)

  • Jung, Won-Dea;Kim, Jae-Whan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-64
    • /
    • 2011
  • Objective: The aim of this paper is to introduce the activities and research trends of human reliability analysis including brief summary about contents and methods of the analysis. Background: Various approaches and methods have been suggested and used to assess human reliability in field of risk assessment of nuclear power plants. However, it has noticed that there is high uncertainty in human reliability analysis which results in a major bottleneck for risk-informed activities of nuclear power plants. Method: First and second generation methods of human reliability analysis are reviewed and a few representative methods are discussed from the risk assessment perspective. The strength and weakness of each method is also examined from the viewpoint of reliability analyst as a user. In addition, new research trends in this field are briefly summarized. Results: Human reliability analysis has become an important tool to support not only risk assessment but also system design of a centralized complex system. Conclusion: Human reliability analysis should be improved by active cooperation with researchers in field of human factors. Application: The trends of human reliability analysis explained in this paper will help researchers to find interest topics to which they could contribute.

Evaluation of Human Reliability Analysis Results in Probabilistic Safety Assessment for Korea Standard Nuclear Power Plants (표준 원자력발전소 확률론적 안전성 평가의 인간 신뢰도 분석 평가)

  • 강대일;정원대;양준언
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • Based on ASME probabilistic risk assessment (PRA) and NEI PRA peer review guidance, we evaluate a human reliability analysis (HRA) in probabilistic safety assessment (PSA) for Korea standard nuclear power plants, Ulchin Unit 3&4, to improve it performed at under design. The HRA for Ulchin Unit 3&4 is assessed as higher than Grade I based on ASME PRA standard and as higher than Grade 2 based on NEI PRA peer review guidance. The major items to be improved identified through the evaluation process are the documentation, the systematic human reliability analysis, the participitation of operators in the works and review of HRA. We suggest the guidance on the identification and qualitative screening analysis for pre-accident human errors and solve some items to be improved using the suggested guidance.

Human Reliability Analysis of Soft Control Operations in Nuclear Power Plants: Issues and Perspectives

  • Lee, Seung Jun;Jung, Wondea
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2013
  • Objective: The aim of this study is to describe several issues which should be considered in the human reliability analysis of soft control operations in nuclear power plants. Background: The operational environment of advanced main control rooms is totally different from that of conventional control rooms. The soft control is one of the major distinguishable features of the advanced main control rooms. The soft control operations should be analyzed to estimate the effects on human reliability. Method: The literatures, about task analysis, simulation data analysis, and a human reliability analysis method for the soft control, were reviewed. From the review, important issues for the human reliability analysis of the soft control were raised. Results: The results of task and simulation data analysis showed that the soft control characteristics could have large effect on human reliability and they should be considered in the human reliability analysis of the soft control operations. Conclusion: The soft control may affect human error and performance of operators. The issues described in this paper should be considered in the human reliability method for the advanced main control rooms. Application: The results of the soft control operation analysis might help to design more efficient interface and education/training program for preventing human errors. The described issues might help to develop a human reliability analysis method for soft control operations.

Selection of Influencing Factors for Human Reliability Analysis of Accident Management Tasks in Nuclear Power Plants (원자력 발전소 사고관리 직무의 인간신뢰도분석을 위한 수행영향인자의 선정)

  • Kim, Jae-Hwan;Jeong, Won-Dae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.1-28
    • /
    • 2001
  • This paper deals with the selection of the important Influencing Factors (IFs) under accident management situations in nuclear power plants for use in the assessment of human errors. In order to achieve this goal, we collected two types of IF taxonomies, one is the full set IF list mainly developed for human error analysis. and the other is the IFs for human reliability analysis (HRA) in probabilistic safety assessment (PSA). Five sets of IF taxonomy among the full set IF list and ten sets of IF taxonomy among HRA methodologies were collected in the study. From the review and analysis of BRA IFs, we could obtain some insights for the selection of HRA IFs. By considering the situational characteristics of the accident management domain, candidate IFs are chosen. Finally, those IFs are structured hierarchically to be appropriate for the use in the assessment of human error under accident management situation. Three nuclear accidents such as TMI. Chernobyl and JCO were analysed to validate the proposed taxonomy.

  • PDF

AGAPE-ET: A Predictive Human Error Analysis Methodology for Emergency Tasks in Nuclear Power Plants (원자력발전소 비상운전 직무의 인간오류분석 및 평가 방법 AGAPE-ET의 개발)

  • 김재환;정원대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.104-118
    • /
    • 2003
  • It has been criticized that conventional human reliability analysis (HRA) methodologies for probabilistic safety assessment (PSA) have been focused on the quantification of human error probability (HEP) without detailed analysis of human cognitive processes such as situation assessment or decision-making which are crticial to successful response to emergency situations. This paper introduces a new human reliability analysis (HRA) methodology, AGAPE-ET (A guidance And Procedure for Human Error Analysis for Emergency Tasks), focused on the qualitative error analysis of emergency tasks from the viewpoint of the performance of human cognitive function. The AGAPE-ET method is based on the simplified cognitive model and a taxonomy of influencing factors. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, overall human error analysis process is designed considering the cognitive demand of the required task. The application to an emergency task shows that the proposed method is useful to identify task vulnerabilities associated with the performance of emergency tasks.

An algorithm for evaluating time-related human reliability using instrumentation cues and procedure cues

  • Kim, Yochan;Kim, Jaewhan;Park, Jinkyun;Choi, Sun Yeong;Kim, Seunghwan;Jung, Wondea;Kim, Hee Eun;Shin, Seung Ki
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.368-375
    • /
    • 2021
  • The performance time of human operators has been recognized as a key aspect of human reliability in socio-complex systems, including nuclear industries. Because of the importance of the time factor, most existing human reliability assessment methods provide ways to quantify human error probabilities (HEPs) that are associated with the performance time. To quantify such kinds of HEPs, it is crucial to rationally predict the length of time required and time available and compare them. However, there have not been detailed guidelines that identify the critical cue presentation time or initial time of human performance, which is important to calculate the time information. In this paper, we introduce a time-related HEP calculation technique with a decision algorithm that determines the critical cue and its timing. The calculation process is presented with the application examples. It is expected that the proposed algorithm will reduce the variability in the time-related reliability assessment and strengthen the scientific evidence of the assessment process. The detailed description is provided in the technical report KAERI/TR-7607/2019.

Reliability assessment of RC shear wall-frame buildings subjected to seismic loading

  • Tuken, Ahmet;Dahesh, Mohamed A.;Siddiqui, Nadeem A.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • A considerable research is available on the seismic response of Reinforced Concrete (RC) shear wall-frame buildings, but the studies on the reliability of such buildings, with the consideration of human error, are limited. In the present study, a detailed procedure for reliability assessment of RC shear wall-frame building subjected to earthquake loading against serviceability limit state is presented. Monte Carlo simulation was used for the reliability assessment. The procedure was implemented on a 10-story RC building to demonstrate that the shear walls improve the reliability substantially. The annual and life-time failure probabilities of the studied building were estimated by employing the information of the annual probability of earthquake occurrence and the design life of the building. A simple risk-based cost assessment procedure that relates both the structural life-time failure probability and the target reliability with the total cost of the building was then presented. The structural failure probability (i.e., the probability of exceeding the allowable drift) considering human errors was also studied. It was observed that human error in the estimation of total load and/or concrete strength changes the reliability sharply.

New method for dependence assessment in human reliability analysis based on linguistic hesitant fuzzy information

  • Zhang, Ling;Zhu, Yu-Jie;Hou, Lin-Xiu;Liu, Hu-Chen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3675-3684
    • /
    • 2021
  • Human reliability analysis (HRA) is a proactive approach to model and evaluate human systematic errors, and has been extensively applied in various complicated systems. Dependence assessment among human errors plays a key role in the HRA, which relies heavily on the knowledge and experience of experts in real-world cases. Moreover, there are ofthen different types of uncertainty when experts use linguistic labels to evaluate the dependencies between human failure events. In this context, this paper aims to develop a new method based on linguistic hesitant fuzzy sets and the technique for human error rate prediction (THERP) technique to manage the dependence in HRA. This method handles the linguistic assessments given by experts according to the linguistic hesitant fuzzy sets, determines the weights of influential factors by an extended best-worst method, and confirms the degree of dependence between successive actions based on the THERP method. Finally, the effectiveness and practicality of the presented linguistic hesitant fuzzy THERP method are demonstrated through an empirical healthcare dependence analysis.

A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions

  • Kancev, Dusko
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1983-1989
    • /
    • 2020
  • The human reliability analysis is a method by which, in general terms, the human impact to the safety and risk of a nuclear power plant operation can be modelled, quantified and analysed. It is an indispensable element of the PSA process within the nuclear industry nowadays. The paper herein presents a sensitivity study of the human reliability analysis performed on a real nuclear power plant-specific probabilistic safety assessment model. The analysis is performed on a pre-selected set of post-initiator operator actions. The purpose of the study is to investigate the impact of these operator actions on the plant risk by altering their corresponding human error probabilities in a wide spectrum. The results direct the fact that the future effort should be focused on maintaining the current human reliability level, i.e. not letting it worsen, rather than improving it.

Evidential Analytic Hierarchy Process Dependence Assessment Methodology in Human Reliability Analysis

  • Chen, Luyuan;Zhou, Xinyi;Xiao, Fuyuan;Deng, Yong;Mahadevan, Sankaran
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.