• 제목/요약/키워드: Human Fibroblast

검색결과 799건 처리시간 0.025초

Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts

  • Akbulut, Makbule Bilge;Arpaci, Pembegul Uyar;Eldeniz, Ayce Unverdi
    • Restorative Dentistry and Endodontics
    • /
    • 제43권3호
    • /
    • pp.24.1-24.12
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the biocompatibility of newly proposed root-end filling materials, Biodentine, Micro-Mega mineral trioxide aggregate (MM-MTA), polymethylmethacrylate (PMMA) bone cement, and Smart Dentin Replacement (SDR), in comparison with contemporary root-end filling materials, intermediate restorative material (IRM), Dyract compomer, ProRoot MTA (PMTA), and Vitrebond, using human periodontal ligament (hPDL) fibroblasts. Materials and Methods: Ten discs from each material were fabricated in sterile Teflon molds and 24-hour eluates were obtained from each root-end filling material in cell culture media after 1- or 3-day setting. hPDL fibroblasts were plated at a density of $5{\times}10^3/well$, and were incubated for 24 hours with 1:1, 1:2, 1:4, and 1:8 dilutions of eluates. Cell viability was evaluated by XTT assay. Data was statistically analysed. Apoptotic/necrotic activity of PDL cells exposed to material eluates was established by flow cytometry. Results: The Vitrebond and IRM were significantly more cytotoxic than the other root-end filling materials (p < 0.05). Those cells exposed to the Biodentine and Dyract compomer eluates showed the highest survival rates (p < 0.05), while the PMTA, MM-MTA, SDR, and PMMA groups exhibited similar cell viabilities. Three-day samples were more cytotoxic than 1-day samples (p < 0.05). Eluates from the cements at 1:1 dilution were significantly more cytotoxic (p < 0.05). Vitrebond induced cell necrosis as indicated by flow cytometry. Conclusions: This in vitro study demonstrated that Biodentine and Compomer were more biocompatible than the other root-end filling materials. Vitrebond eluate caused necrotic cell death.

연속가교를 통한 피부 진피세포 담지 콜라겐 겔의 강도 제어 (Tuning the Stiffness of Dermal Fibroblast-encapsulating Collagen Gel by Sequential Cross-linking)

  • 정문희;신성규;임준우;한사라;김희진;정재현
    • 대한화장품학회지
    • /
    • 제44권1호
    • /
    • pp.23-29
    • /
    • 2018
  • 본 연구에서는 생체재료인 콜라겐과 합성 단량체인 아크릴아마이드를 연속가교 하여, 하이드로젤 기반의 콜라겐 겔을 제조하였다. 아크릴아마이드의 함량 및 가교 정도에 따라, 1.5 kPa에서 3.0 kPa까지 다양한 강도(E)를 갖는 콜라겐 겔을 제조할 수 있었다. 또한, 콜라겐 겔에 다공성 기공을 도입하고 진피세포를 내부에 담지하여, 겔 강도에 따른 세포 성장 및 거동을 확인하였다. 상대적으로 강도가 높은 겔에서 세포의 성장은 느렸지만 GAG 합성 및 분비는 활성화되는 것을 확인하였다. 콜라겐 겔의 기계적 물성에 따라 세포의 성장 및 활성이 영향을 받는 것을 알 수 있었으며, 이는 향후 인공피부 제조 및 응용, 나아가 다양한 조직공학 분야의 기반 기술로 활용 가능하리라 기대된다.

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

The effect of plant extracts on the activity and the expression of MMPs (matrix metalloprotease) induced by UVA

  • Lee, Dong-hwan;Lee, Bum-chun;Yoon, Eun-jeong;Lee, Kyung-eun;Park, Sung-min;Pyo, Hyeong-bae;Choe, Tae-boo
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.32-43
    • /
    • 2003
  • UV irradiation on a skin brings about the qualitative and quantitative alterations of the extracellular matrix. Repeated-UV irradiation suppressed the synthesis of collagen and activated the expression of the matrix metalloprotease (MMP). In this paper, on the purpose of development of novel anti-aging agents from natural sources, effects of several natural products on in vitro MMP-1 activity and UVA induced MMP-1 synthesis in human dermal fibroblast (HDF) culture were studied. We measured MMP-1 activities by fluorescence assay using gelatin as substrates. As a result, the extract of Dicentra spectabilis, and flower buds of Tussilago farfara showed strong inhibitory effect. Among them, the extract of flower buds of Tussilago fartara and Dicentra spectabilis inhibited MMP-1 activity by 92% and 87% at 0.05% (w/v). And UVA induced MMP-1 expression were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in HDF culture. The extract of flower buds of Tussilago farfara and Dicentra spectabilis suppressed the UVA induced expression of MMP-1 by similar level of Vitamin C 200$\mu$M at 0.1% (w/v). These results suggest that the extract of Dicentra spectabilis, and flower buds of Tussilago farfara effectively prevent skin from the UV-induced photoaging. So the extracts are thought to have potential as effective raw materials for anti-aging cosmetics.

  • PDF

Puerariae Radix Induces Angiogenesis in vitro and in vivo

  • Choi, Do-Young;Kang, Jung-Won;Cho, Eun-Mi;Lee, Jae-Dong;Huh, Jeong-Eun;Yang, Ha-Ru;Baek, Yong-Hyeon;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • 제22권2호
    • /
    • pp.171-180
    • /
    • 2005
  • Background & Objective : Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine whether Puerariae radix could induce angiogenic activity in human umbilical vein endothelial cells (HUVECs). Methods: The angiogenic activity of Puerariae radix were evaluated by using BrdU assay, chemotactic migration assay, tube formation assay, measurement of bFGF in HUVECs, and Matrigel plug assay in mice. Results : Puerariae radix significantly increased HUVECs proliferation in a dose-dependent manner. In addition, Puerariae radix increased migration and tube-like formation in HUVECs. Interestingly,the expression of basic fibroblast growth factor (bFGF), an angiogenesis-stimulating growth factor, was dose-dependently increased by Puerariae radix. The angiogenic activity of Puerariae radix was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. Conclusion : Puerariae radix significantly induces angiogenesis in vitro and in vivo. These results suggest that Puerariae radix is a potent angiogenic agent, and a promising drug, for the induction of neovascularization.

  • PDF

사람치주인대섬유모세포에 의한 골결절 형성시 Chlorhexidine의 효과 (The Effect of Chlorhexidine on the formation of bone nodules by Periodontal ligament Cells in Vitro)

  • 최희준;지숙;국중기;장현선;박주철;김흥중;김종관;김병옥
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.375-383
    • /
    • 2006
  • 사람치주인대섬유모세포(human periodontal ligament fibroblast, PDLF)의 기능 손상과 클로르헥시딘(Chlorhexidine, CHX)의 세포독성에 관한 분자적인 기전은 최근까지도 불명확하다. 이 연구의 목적은 PDLF에 의한 골결절 형성에 있어서 CHX의 효과를 평가하고, 치주수술후에 치주병원균의 최소억제농도(minimal inhibitory concentration, MIC)를 평가하고자 하였다. CHX의 세포독성을 평가하기 위해서 MTT assay법을 실시하였다. CHX은 0.12%에서 0.00012%까지, 즉 10-1000배로 희석시킨 후 30, 60, 120초 동안 PDLF에 적용되었고, 석회화된 결절은 alizarin red 용엑에 염색되었다. 치주병원균에 대한 CHX의 MIC가 평가되었다. 이 연구 결과, 세포생존율 검사에서는, 단지 0.12% CHX 에 노출되었던 세포들만 세포 증식 소견을 다소 나타내었다. 모든 CHX 농도(0.12%-0.00012%)에서 PDLF에 의한 골결절 형성은 의미있는 감소를 나타내었다. 또한 치주병원균에 대한 CHX의 MIC는 0.0012%로 나타났다. PDLF의 골결절 형성에 영향을 주는 농도(0.00012%)는 세포독성을 나타내는 농도(0.12%)보다 더 낮은 농도를 보였고, 치주병원균의 최소억제에 필요한 농도는 0.0012%로 나타났다. 이런한 결과들은 통상적으로 상용되는CHX이 PDLF에 의한 골결절 형성에 있어서 영향을 미칠 수 있음을 시사하였다.

MITOCHONDRIAL DNA DELETION AND IMPAIRMENT OF MITOCHONDRIAL BIOGENESIS ARE MEDIATED BY REACTIVE OXYGEN SPECIES IN IONIZING RADIATION-INDUCED PREMATURE SENESCENCE

  • Eom, Hyeon-Soo;Jung, U-Hee;Jo, Sung-Kee;Kim, Young-Sang
    • Journal of Radiation Protection and Research
    • /
    • 제36권3호
    • /
    • pp.119-126
    • /
    • 2011
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and $H_2O_2$-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and $H_2O_2$-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-${\beta}$-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

Artificial Dermis Composed of Gelatin, Hyaluronic Acid and (1\longrightarrow3),(1\longrightarrow6)-$\beta$-Glucan

  • Lee, Sang-Bong;Jeon, Hyun-Wook;Lee, Young-Woo;Cho, Seong-Kwan;Lee, Young-Woo;Song, Kang-Won;Park, Moon-Hyang;Hong, Sung-Hwa
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.368-374
    • /
    • 2003
  • Porous scaffolds composed of gelatin and polysaccharides such as hyaluronic acid and $\beta$-glucan were prepared by using the freeze-drying method after cross-linking with l-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). The scaffold had an inter-connected pore structure with the sufficient pore size for use as a support for the growth of fibroblasts. Results for the contact angle and cell attachment confirmed that high gelatin content in a mixture was suitable for cellular attachment and distribution in two- or three-dimensional fibroblast cultures. However, the addition of polysaccharides aroused the synergistic effects of morphologic and mechanical property of gelatin-based scaffolds. To prepare the artificial dermis for the wound dressing to mimic the normal human dermal skin, fibroblasts were isolated from a child's foreskin, and cultured in gelatin-based scaffolds. An in vivo study showed that the artificial dermis containing the fibroblasts enhanced the wound healing rate and re-epithelialization of a full-thickness skin defect rather than the acellular scaffold after one week.

Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis

  • Lee, Aram;Yun, Eunsik;Chang, Woochul;Kim, Jongmin
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.300-307
    • /
    • 2020
  • Background: Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases. Methods: EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation were investigated by modulating the microRNA expression. Results: The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely EndMT. On the other hand, Rg3 markedly attenuated the iE-DAP-induced EndMT and preserved the endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAP-induced EndMT and partly reversed in response to Rg3 via the regulation of NF-κB signaling, suggesting that the Rg3-miR-139-5p-NF-κB axis is a key mediator in iE-DAP-induced EndMT. Conclusion: These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.

고로쇠 나무의 수피와 수액의 향장활성 비교 (Comparison on Cosmetic Activities of Acer mono Bark and Sap)

  • 서용창;김지선;최운용;조정섭;임혜원;윤창순;마충제;이현용
    • 한국약용작물학회지
    • /
    • 제19권4호
    • /
    • pp.264-270
    • /
    • 2011
  • In this study, we investigated the cosmetic application of Acer mono sap through an ultra-high pressure process. Exposing Acer mono sap to a ultra-high pressure process resulted in 90.1% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration. Acer mono sap also showed the hightest free radical scavenging activity after the ultra high pressure process. The melanogenesis inhibition rate in cloned M-3 cells was 59.0%. Tyrosinase was inhibited at a rate of 87.2% by adding 100% HPAMS. Anti-wrinkle activity was 78.1%. Acer mono sap showed enhanced storage following the ultra high pressure process. These results indicate that Acer mono sap may be a source for functional cosmetic agents capable of improving antioxidant, whitening, and antiwrinkling effects.