• 제목/요약/키워드: Human Erythropoietin (hEPO)

검색결과 24건 처리시간 0.028초

Development and Characterization of Hyperglycosylated Recombinant Human Erythropoietin (HGEPO)

  • JarGal, Naidansuren;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • 제33권2호
    • /
    • pp.77-83
    • /
    • 2009
  • Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endothelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating the roles of glycosylation site added in the biosynthesis and function of recombinant protein. We constructed three EPO mutants ($\Delta$69, $\Delta$105 and $\Delta$69,105), containing an additional oligosaccharide chains. EPOWT and EPO$\Delta$69 were effectively expressed in transient and stably transfected CHO-K1 cell lines. But, it wasn't detected any protein in the culture medium of EPO$\Delta$105 and EPO$\Delta$69,105 mutants. The growth and differentiation of EPO-dependent human leukemic cell line (F36E) were used to measure the cytokine dependency and in vitro bioactivity of rec-hEPO. MTT assay values were increased by survival of F36E cells at 24h. To analysis biological activity in vivo, two groups of ICR-mice (7 weeks old) were injected subcutaneously with 10 IU per mice of rec-hEPO molecules on days 0 and 2. Red blood cell and hematocrit values were measured on 6 days after the first injection. The hematocrit values were remarkably increased in all treatment groups. The pharmacokinetic analysis was also affected in the mice injected with rec-hEPO molecules 2.5 IU by tail intravenous. Protein samples were detected by Western blotting. An EPO$\Delta$69 protein migrated as a broad band with an average apparent molecular and detected slightly high band. Enzymatic N-deglycosylation resulted in narrow band and was the same molecular size. The biological activity of EPO$\Delta$69 was enhanced to compare with wt-hEPO. The half-life was longer than wt-hEPO. The results suggest that hyperglycosyalted recombinant human erythropoietin (EPO$\Delta$69) may have important biological and therapeutic good points.

운동선수들의 혈액분석을 통한 Etrythropoietin 간접도핑검사 (Blood Analysis for Indirect Doping Control of Erythropoietin in Sports)

  • 이정란;김소영;홍지연;김명수;최명자
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.422-431
    • /
    • 2003
  • The use of recombinant human erythropoietin (rhEPO), a stimulator of erythropoiesis, banned in sports because of the medical risk associated with thrombosis. Due to analytical difficulties to differentiate between natural human EPO (hEPO) and rhEPO, blood parameters of erythropoiesis such as contents of hemoglobin (cut-off value <17.5 g/d l for man, and < 16.0 g/dl for women), hematocrit and reticulocytes (cut-off value <2.0%) were measured to focus the misuse of rhEPO. We conducted anti-doping test for 122 blood samples of the World Cup athletes. The mean values of key parameters are as follows; 14.5$\pm$1.0 g/dl for hemoglobin, 41.7$\pm$2.8% for hematocrit, and 1.3$\pm$0.4% for reticulocyte. Blood sample was found to be stable up to 8 hours for the reticulocyte measurement. In addition, the soluble transferrin receptor and ferritin levels were measured by immunoassay methods using plasma samples (n=28) in which the mean value was 0.8$\pm$0.5 $\mu\textrm{g}$/$m\ell$ and 54.6$\pm$33.7 ng/$m\ell$, respectively. The results indicate that all samples tested were negative for the blood parameters of indirect anti-doping test for hEPO misuse. The statistical evaluation suggest that several other parameters such as red blood cell, mean corpuscular hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin and white blood cell could be considered as factors influencing hEPO function in addition to five parameters mentioned.

hEPO 유전자의 발현이 조절되는 형질전환 닭의 생산 (Generation of Transgenic Chickens Regulating hEPO Gene Expression)

  • 구본철;권모선;김태완
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.193-199
    • /
    • 2010
  • We report here the production of transgenic chickens that can regulate human erythropoietin (hEPO) gene expression. The glycoprotein hormone hEPO is an essential for viability and growth of the erythrocytic progenitors. Retrovirus vector system used in this study has two features including tetracycline-controllable promoter and woodchuck hepatitis virus posttranscriptional regulator element (WPRE). The former is for to reduce the possibility of physiological disturbance due to constitutional and unregulated expression of hEPO gene in the transgenic chicken. The latter is for maximum expression of the foreign gene when we turn-on the gene expression. A replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 325 injected eggs, 28 chicks hatched after 21 days of incubation and 16 hatched chicks were found to express the hEPO gene delivered by the vector. The biological activity of the recombinant hEPO in transgenic chicken serum was comparable to its commercially available counterpart. The recombinant hEPO in transgenic chicken serum had N- and O-linked carbohydrate simillar to that produced from in vitro cultured cells transformed with hEPO gene.

Expression and Functional Characterization of Recombinant Human Erythropoietin (rhEPO) Produced in the Milk of Transgenic Mice

  • 권득남;박종이;이소영;황규찬;양민정;김진회
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.17-17
    • /
    • 2003
  • The milk of transgenic animals may provide an attractive vehicle for large-scale production of hEPO. Since glycosylation is cell type specific, recombinant human EPO (rhEPO) produced in different host cells contain different patterns of oligosaccharides, which could affect the biological functions. However, there have been no reports on the characteristics of rhEPO derived from milk of transgenic animals. To address this objective, several transgenic mice by using pWAPhEPO and/or pBC1hEPO expression vector were produced. However, 2 lines of pWAPhEPO founder female mouse died during late gestational day (day 18) before offspring could be obtained. They showed a severe splenomegaly, Unlike those of pWAPhEPO, mammary gland epithelial cells from biopsies of lactating pBC1hEPO transgenic mice had marked immunoreactivity to EPO and any activity was not detected in other tissues. The expression level of rhEPO is about 0.7% of mammary gland cellular total soluble proteins and an amount of 300~500 mg/L rhEPO is secreted into milk. Furthermore, the pBC1hEPO transgenic mice transmitted this character to their progeny in mendelian manner. In order to determine the extent of glycosylation variation, N-linked oligosaccharide structures present in the milk-derived rhEPO were characterized. Most of milk-derived rhEPO is fully glycosylated. the biological activity of milk-derived rhEPO was comparable to that of purified CHO-derived rhEPO, and milk-derived rhEPO showed relatively stable after freezing and thawing. Taken together, the results illustrate the potential of transgenic animals in the large-scale production of biopharmaceuticals.

  • PDF

Biological Activity of Recombinant Human Erythropoietin (EPO) In Vivo and In Vitro

  • Park Jong-Ju;Lee Hyen-Gi;Nam In-Suk;Park Hee-Ja;Kim Min-Su;Chung Yun-Hi;Naidansuren Purevjargal;Kang Hye-Young;Lee Poong-Yun;Park Jin-Gi;Seong Hwan-Hoo;Chang Won-Kyong;Kang Myung-Hwa
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.69-73
    • /
    • 2005
  • The hematopoietic growth factor erythropoietin (EPO) is required for the maintenance, proliferation, and differentiation of the stem cells that produce erythrocytes. To analyse the biological activity of the recombinant human EPO (rec-hEPO), we have cloned the EPO cDNA and genomic DNA and produced rec-hEPO in the CHO cell lines. The growth and differentiation of EPO-dependent human leukemic cell line (F36E) were used to measure cytokine dependency and in vitro bioactivity of rec-hEPO. MIT assay values were increased by survival of F36E cells at 24h or 72h. The hematocrit and RBC values were increased by subcutaneous injection of 20 IU (in mice) and 100IU(in rats) rec-hEPO. Hematocrit values remarkably increased at $13.2\%$ (in mice) and $12.2\%$ (in rats). The pharmacokinetic behavior with injection of 6 IU of rec-hEPO remained detectable after 24 h in all mice tested. The highest peat appeared at 2h after injection. The long half-life of rec-hEPO is likely to confer clinical advantages by allowing less frequent dosing in patients treated for anemia. These data demonstratethat ree-hEPO produced in this study has a potent activity in vivo and in vitro. The results also suggest that biological activity of ree-hEPO could be remarkably enhanced by genetic engineering that affects the potential activity, including mutants with added oligosaccharide chain and designed to produce EPO-EPO fusion protein.

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • 제60권6호
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

사람 조혈인자 유전자(Human Erythropoietin Gene)를 도입한 형질전환돼지 생산 (Production of Transgenic Porcine haboring the Human Erythropoietin(EPO) Gene)

  • 이연근;박진기;민관식;이창현;성환후;전익수;임석기;양병철;임기순
    • 한국가축번식학회지
    • /
    • 제26권2호
    • /
    • pp.95-104
    • /
    • 2002
  • 본 연구는 사람의 조혈촉진 유전자(hEPO)가 도입된 형질전환 돼지를 생산하기 위해 사계절동안 수행하였다. 약 8∼15개월령의 순종의 랜드레이스 경산돈 및 미경산돈 42두는 유전자 미세주입을 위한 1세포기 단계의 수정란 채란 및 이식을 위해 사용하였으며, 발정동기화 및 과배란 방법은 PG 600 주입 후 9일간 매일 20mg의 altrenogest를 사료에 첨가하여 급여하였다. Altrenogest를 9일간 급여 후 1,500IU의 PMSG와 500IU의 hCG를 주입하므로서 과배란을 유도하였다. 미세주입을 위한 유전자는 mouse whey acidic protein(mWAP) 프로모터에 hEPO 유전자를 연결하여 준비하였으며, 호르몬 처리후 23두의 공란돈으로 부터 650개의 난자를 회수하였으며, 이 중 83.1%(540/650)는 DNA 미세주입을 위해 전핵을 관찰할 수 있는 1-세포기의 수정란이었다. 이중 유전자가 미세주입 된 543개의 난자를 19두의 수란돈에 이식하였으며 7두의 임신돈으로부터 47두의 자돈을 생산하였다. 생산된 자돈 47두로부터 꼬리조직으로부터 분리된 DNA의 PCR 검정 결과 수컷 1두가 형질전환 양성반응을 나타내어 2.13%의 형질전환율을 나타내었으며, 이러한 연구의 결과는 생체반응기(bioreactor)연구에 있어서 형질전환 돼지생산의 성공적이며 유용한 정보를 제공할 것으로 사료된다.

Studies on the Effective Drug Delivery System Using Naked Plasmid DNA for the Erythropoietin Expression in vivo

  • 박영섭;정동건;안진호;최차용;주현
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.582-586
    • /
    • 2003
  • There has been interest in developing gene therapy based on naked plasmid DNA for treating serum protein deficiencies and human erythropoietin (hEPO) is one of the candidate for gene therapy being Investigated most enthusiastically. We constructed novel plasmid DNA vectors pVAC-hEPOI/II/III which contain one, two, three hEPO gene(s) respectively for producing high level expression and secretion of hEPO in vitro and in vivo. NIH3T3 and COS7 cells were transfected transiently with these vectors and increase in hEPO expression in medium reached 2-5 fold in comparison with pSecTagB-hEPO. Intra muscular administrations of pVAC-hEPOI/II/III vectors into mice resulted in high level secretion of hEPO in the serum and corresponding increases in hematocrit level. In conclusion the transduction efficiency of naked plasmid vectors is one of the critical factors of a gene delivery system and these novel plasmid vectors will contribute to various gene therapy based on naked plasmid DNA.

  • PDF

Human Erythropoietin Induces Lung Failure and Erythrocytosis in Transgenic Mice

  • Kim, Myoung Ok;Kim, Sung Hyun;Shin, Mi Jung;Lee, Dong Beom;Kim, Tae Won;Kim, Kil Soo;Ha, Ji Hong;Lee, Sanggyu;Park, Yong Bok;Kim, Sun Jung;Ryoo, Zae Young
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.17-22
    • /
    • 2007
  • We have expressed human erythropoietin (EPO) in transgenic mice using a recombinant EPO cDNA combined with a partial TPO construct. The gene was microinjected using standard techniques and five mice were detected as transgenic by PCR and further used as founders. The life span of the transgenic founders was much shorter than that of their normal littermates. Most of the tissues of the transgenic founders contained human EPO transcripts as judged by RT-PCR. Especially high expression levels were seen in the liver and lung. EPO protein levels in serum were examined by ELISA and ranged from 266-414 mIU/ml. The number of red blood cell, white blood cell and hemoglobin in the hEPO transgenic mice was higher than in normal mice. These results indicate that overexpression of hEPO is deleterious and can provoke lung failure and erythrocytosis.

신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호 (Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury)

  • 장윤정;서억수;김우택
    • Neonatal Medicine
    • /
    • 제16권2호
    • /
    • pp.221-233
    • /
    • 2009
  • 목 적 : 신장에서 분비되어 적혈구를 생산하는 빈혈제로 알려진 에리스로포이에틴(Erythropoietin, EPO)은 단순히 피를 만드는 조혈기능 뿐 아니라 최근 신경계 보호 및 신경강화 효과가 있다고 발표되고 있지만 주산기 가사로 인한 저산소성 허혈성 뇌병증의 치료제로서 그 기전이 명확하게 밝혀지지 않았다. 저자들은 유전자 재조합 인 에리스로포이에틴(recombinant Human EPO, rHuEPO)을 이용하여 주산기 저산소성 허혈성 뇌병증의 치료제로서 N-methyl-D-aspartate (NMDA) 수용체와 관련된 흥분성 독성작용을 통한 조절 등 그 기전을 알아보고자 하였다. 방 법 : 재태기간 19일된 태아 백서의 대뇌피질 세포를 배양하여 정상산소군은 5% $CO_2$ 배양기(95% air, 5% $CO_2$)에 두었고, 저산소군과 농도별 뇌손상 전 rHuEPO 투여군(1, 10, 100 IU/mL)은 1% $O_2$ 배양기(94% $N_2$, 5% $CO_2$)에서 6시간 동안 뇌세포손상을 유도하였다. 세포성장과 생존력을 평가하기 위해 MTT 실험을 시행하였다. 동물 모델에서는 생후 7일된 신생백서의 좌측 총 경동맥을 결찰한 후 6개 군; 정상산소군, sham-operated군, 저산소-허헐성군, 저산소-허헐성+vehicle군, 저산소-허헐성 손상 전 rHuEPO 투여군, 저산소-허헐성 손상 후 rHuEPO 투여군으로 나누었고, 저산소-허헐성 손상은 특별히 제작한 통속에서 2시간 동안 8% $O_2$ (8% $O_2$, 92% $N_2$)에 노출시켰다. rHuEPO은 뇌손상 전후 30분에 체중 kg당 1000 IU를 투여하였고, 저산소-허헐성 손상 후 7일째 조직을 실험하였다. 적출한 조직으로 H&E 염색을 하여 뇌손상을 형태학적으로 관찰하였다. 세포배양 및 동물실험에서 NMDA 수용체의 아단위인 NR1, NR2A, NR2B, NR2C, NR2D를 이용하여 실시간 중합효소연쇄반응을 실시하였다. 결 과 : 저산소군에서 세포 생존률은 정상산소군보다 60% 감소하였으며, rHuEPO 투여군(1, 10 IU/mL)은 80% 증가하였다. rHuEPO 투여군(100 IU/mL)은 회복되지 않았다. 우측 반구 대비 좌측 반구의 범위는 정상산소군 98.9%, sham-operated군 99.1%, 저산소-허헐성군 57.1%, 저산소-허헐성+vehicle군 57.0%, 저산소-허헐성 손상 전 rHuEPO 투여군 87.6%, 저산소-허헐성 손상 후 rHuEPO 투여군 91.6%으로 나타났다. NMDA 수용체의 아단위 생체외 실험에서 실시간 중합효소연쇄반응의 결과 NMDA 수용체 아단위 mRNA의 발현은 rHuEPO 투여군에서 저산소군보다 모두 증가하였다. 결 론 : 본 연구에서 rHuEPO은 흥분성 독성작용과 관련되어 NMDA 수용체를 조절하면서 저산소성 허헐성 뇌손상을 보호하는 것을 알 수 있었다.