• Title/Summary/Keyword: Human Embryonic Stem Cells

Search Result 238, Processing Time 0.027 seconds

Optimal Derivation Timing for Establishment of Porcine Embryonic Stem Cells (돼지 배아줄기세포 확립을 위한 최적의 유도시기)

  • Kim, Eun-Hye;Cheong, Seung-A;Yoon, Junchul David;Jeon, Yubyeol;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A lot of works have been dedicated to clarify the reasons why the establishment of embryonic stem cells (ESCs) from pig is more difficult than that from mouse and human. Several concomitant factors such as culture condition including feeder layer, sensitivity of cell to cell contact, definitive markers of pluripotency for evaluation of the validity and optimal timing of derivation have been suggested as the disturbing factors in the establishment of porcine ESCs Traditionally, attempts to derive stem cells from porcine embryos have depend on protocols established for mouse ESCs using inner cell mass (ICM) for the isolation and culture. And more recently, protocols used for primate ESCs were also applied. However, there is no report for the establishment of porcine ESCs. Indeed, ungulate species including pigs have crucial developmental differences unlike rodents and primates. Here we will review recent studies about issues for establishment of porcine ESCs and discuss the promise and strategies focusing on the timing for derivation and pluripotent state of porcine ESCs.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

Comparative Analysis of Stem Cell Research Policy Changes in UK, US, and South Korea: Application of Advocacy Coalition Framework Model (영국, 미국, 한국의 줄기세포연구에 관한 정책변동 비교 분석: Advocacy Coalition Framework 모형의 적용)

  • Bae, Green;Kang, Minah
    • Health Policy and Management
    • /
    • v.23 no.4
    • /
    • pp.314-325
    • /
    • 2013
  • Background: Stem cell research competition is accelerating globally since President Obama signed an executive order, repealing Bush-era policy that limited use of federal tax dollars for embryonic stem cell research. Methods: In this paper, we conducted a comparative analysis of stem cell research policy changes in three countries, including the Human Fertilisation Embryology Act (HFEA) of UK, executive order 13,505 (removing barriers to responsible scientific research involving human stem cells) of USA, and Bioethics and Safety Act of South Korea. Debates on stem cell research are based on conflicts of fundamental beliefs that exist in the supporting and opposing coalitions. We compared regional characteristics of the advocacy coalitions in three countries and presented various factors that might be related to the policy changes. Results: The UK government, parliament, and the HFEA have sought expert consultations and public opinions to establish guidelines. UK has made social consensus through continued discussion for a long time. US President's veto power was one strongest factors influencing policy. South Korean policy was influenced by public opinion and policy brokers. Also, South Korea has not made social consensus. UK had a strong leadership and strong adjustment of coalitions but US and South Korea had not. Dr. Hwang's scandal has had one of the greatest impacts on policy decision in South Korea. Conclusion: The power of public opinion was critical in all three countries. In particular, the influence of public opinion was noticeable in South Korea. Also it turned out that in US and South Korea, the presence of a policy broker who could pursue his or her goals was the most powerful factor among the advocacy coalition factors.

Human Amniotic Fluid Cells Support Expansion Culture of Human Embryonic Stem Cells (양수 세포를 이용한 인간배아줄기세포의 배양)

  • Kim, Hee-Sun;Seol, Hye-Won;Ahn, Hee-Jin;Oh, Sun-Kyung;Ku, Seung-Yup;Kim, Seok-Hyun;Choi, Young-Min;Kim, Jung-Gu;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.261-271
    • /
    • 2004
  • Objective: This study was performed to evaluate the possibility of prolonged culture of human embryonic stem cells (hESC; SNUhES2) on human amniotic fluid cells (hAFC), which had been storaged after karyotyping. Method: The hAFC was prepared for feeder layer in the presence of Chang's medium and STO medium (90% DMEM, 10% FBS) at $37^{circ}C$ in a 5% $CO_2$ in air atmosphere. Prior to use as a feeder layer, hAFC was mitotically inactivated by mitomycin C. The hESCs on hAFC were passaged mechanically every seven days with ES culture medium (80% DMEM/F12, 20% SR, bFGF). Results: The hAFC feeder layer support the growth of undifferentiated state of SNUhES2 for at least 59 passages thus far. SNUhES2 colonies on hAFC feeder appeared slightly angular and flatter shape as compared with circular and thicker colonies observed with STO feeder layer and showed higher level with complete undifferentiation in seven days. Like hESC cultured on STO feeders, SNUhES2 grown on hAFC expressed normal karyotype, positive for alkaline phosphatase activity, high telomerase activity, Oct-4, SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81 and formed embryoid bodies (EBs). Conclusion: The hAFC supports undifferentiated growth of hESC. Therefore, these results may help to provide a clinically practicable method for expansion of hESC for cell therapies.

Electrophysiological insights with brain organoid models: a brief review

  • Rian Kang;Soomin Park;Saewoon Shin;Gyusoo Bak;Jong-Chan Park
    • BMB Reports
    • /
    • v.57 no.7
    • /
    • pp.311-317
    • /
    • 2024
  • Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling.

The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells

  • Sijia, Ji;Wanzhi, Tu;Chenwen, Huang;Ziyang, Chen;Xinyue, Ren;Bingqing, He;Xiaoyan, Ding;Yuelei, Chen;Xin, Xie
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.923-934
    • /
    • 2022
  • Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.

Current Status and Future Strategies to Treat Spinal Cord Injury with Adult Stem Cells

  • Jeong, Seong Kyun;Choi, Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Spinal cord injury (SCI) is one of the most devastating conditions and many SCI patients suffer neurological sequelae. Stem cell therapies are expected to be beneficial for many patients with central nervous system injuries, including SCI. Adult stem cells (ASCs) are not associated with the risks which embryonic stem cells have such as malignant transformation, or ethical problems, and can be obtained relatively easily. Consequently, many researchers are currently studying the effects of ASCs in clinical trials. The environment of transplanted cells applied in the injured spinal cord differs between the phases of SCI; therefore, many researchers have investigated these phases to determine the optimal time window for stem cell therapy in animals. In addition, the results of clinical trials should be evaluated according to the phase in which stem cells are transplanted. In general, the subacute phase is considered to be optimal for stem cell transplantation. Among various candidates of transplantable ASCs, mesenchymal stem cells (MSCs) are most widely studied due to their clinical safety. MSCs are also less immunogenic than neural stem/progenitor cells and consequently immunosuppressants are rarely required. Attempts have been made to enhance the effects of stem cells using scaffolds, trophic factors, cytokines, and other drugs in animal and/or human clinical studies. Over the past decade, several clinical trials have suggested that transplantation of MSCs into the injured spinal cord elicits therapeutic effects on SCI and is safe; however, the clinical effects are limited at present. Therefore, new therapeutic agents, such as genetically enhanced stem cells which effectively secrete neurotrophic factors or cytokines, must be developed based on the safety of pure MSCs.

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

Stem Cell for the Present: Reconfiguration of Stem Cell Research, Ethics and Bio-industry in South Korea after the Hwang (현재를 위한 줄기세포: 황우석 사태 이후 한국에서 줄기세포 연구와 윤리, 바이오산업의 재구성)

  • Paik, Young-Gyung
    • Journal of Science and Technology Studies
    • /
    • v.12 no.1
    • /
    • pp.185-207
    • /
    • 2012
  • Since the Hwang scandal, the South Korean state has expressed often-conflicting interests of encouraging stem cell research and the IVF industry to save the country and introducing the ethical regulation in conformity with "Global Standard." As the tightening ethical regulation of stem cell research has enervated the field of human Embryonic stem cell(hESC) research, somatic stem cells (re-)emerged as an alternative savior that could rescue the future of research communities, bio-industry, practicing doctors, patients and the nation itself from the crisis. The recent literature on Korean biotechnology, however, mainly focus on hESC and relatively little attention has been given to the rapidly growing field of research on somatic stem cells like hematopoietic stem cells(HSCs) or Adipose derived stem cells(ASCs). While the hESC therapy is often regarded as experimental and ethically controversial, the HSCs or Mesenchymal stem cell(MSC) therapies have already made their ways into people's everyday life through market without much public discussion. Many ordinary people in South Korea are familiar with the story of patients who survived leukemia with the HSCs treatment; the number of doctors who are actively marketing the ASCs therapies is on the rapid increase; the concept of cosmetic products made from ASCs is gaining popularity among consumers. In this context, this article argues that the current ethical debates solely focusing on hESC or on the state policy and research regulation are too limiting to fully illuminate the politics of stem cell technologies in South Korea.

  • PDF