• Title/Summary/Keyword: Human Body Model(HBM)

Search Result 13, Processing Time 0.017 seconds

A Design of BJT-based ESD Protection Device combining SCR for High Voltage Power Clamps

  • Jung, Jin-Woo;Koo, Yong-Seo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • This paper presents a novel bipolar junction transistor (BJT) based electrostatic discharge (ESD) protection device. This protection device was designed for 20V power clamps and fabricated by a process with Bipolar-CMOS-DMOS (BCD) $0.18{\mu}m$. The current-voltage characteristics of this protection device was verified by the transmission line pulse (TLP) system and the DC BV characteristic was verified by using a semiconductor parameter analyzer. From the experimental results, the proposed device has a trigger voltage of 29.1V, holding voltage of 22.4V and low on-resistance of approximately $1.6{\Omega}$. In addition, the test of ESD robustness showed that the ESD successfully passed through human body model (HBM) 8kV. In this paper, the operational mechanism of this protection device was investigated by structural analysis of the proposed device. In addition, the proposed device were obtained as stack structures and verified.

A Study on PMOS Embedded ESD Protection circuit with Improved Robustness for High Voltage Applications. (향상된 감내특성을 갖는 PMOS 삽입형 고전압용 ESD 보호회로에 관한 연구)

  • Park, Jong-Joon
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.234-239
    • /
    • 2017
  • In this paper, we propose an ESD (Electrostatic Discharge) protection circuit based on a new structure of SCR (Silicon Controlled Rectifier) embedded with PMOS structure. The proposed ESD protection circuit has a built-in PMOS structure and has a latch-up immunity characteristic and an improved tolerance characteristic. To verify the characteristics of the proposed ESD protection circuit and to analyze its operating characteristics, we compared and analyzed the characteristics of the existing ESD protection circuit using TCAD simulation. Simulation results show that the proposed protection ESD protection circuit has superior latch-up immunity characteristics like the existing SCR-based ESD protection device HHVSCR (High Holding Voltage SCR). Also, according to the results of the HBM (Human Body Model) maximum temperature test, the proposed ESD protection circuit has a maximum temperature value of 355K, which is about 20K lower than the existing HHVSCR 373K. In addition, the proposed ESD protection circuit with improved electrical characteristics is designed by applying N-STACK technology. As a result of the simulation, the proposed ESD protection circuit has a holding voltage characteristic of 2.5V in a single structure, and the holding voltage increased to 2-STACK 4.2V, 3-STACK 6.3V, 4-STACK 9.1V.

A Design of Wide-Bandwidth LDO Regulator with High Robustness ESD Protection Circuit

  • Cho, Han-Hee;Koo, Yong-Seo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1673-1681
    • /
    • 2015
  • A low dropout (LDO) regulator with a wide-bandwidth is proposed in this paper. The regulator features a Human Body Model (HBM) 8kV-class high robustness ElectroStatic Discharge (ESD) protection circuit, and two error amplifiers (one with low gain and wide bandwidth, and the other with high gain and narrow bandwidth). The dual error amplifiers are located within the feedback loop of the LDO regulator, and they selectively amplify the signal according to its ripples. The proposed LDO regulator is more efficient in its regulation process because of its selective amplification according to frequency and bandwidth. Furthermore, the proposed regulator has the same gain as a conventional LDO at 62 dB with a 130 kHz-wide bandwidth, which is approximately 3.5 times that of a conventional LDO. The proposed device presents a fast response with improved load and line regulation characteristics. In addition, to prevent an increase in the area of the circuit, a body-driven fabrication technique was used for the error amplifier and the pass transistor. The proposed LDO regulator has an input voltage range of 2.5 V to 4.5 V, and it provides a load current of 100 mA in an output voltage range of 1.2 V to 4.1 V. In addition, to prevent damage in the Integrated Circuit (IC) as a result of static electricity, the reliability of IC was improved by embedding a self-produced 8 kV-class (Chip level) ESD protection circuit of a P-substrate-Triggered Silicon Controlled Rectifier (PTSCR) type with high robustness characteristics.