• Title/Summary/Keyword: Housing Energy Consumption

Search Result 173, Processing Time 0.019 seconds

A Multiplex Housing Energy Conservation Strategy through Combining Insulation Standard Based Green Roof Systems and Passive Design Elements

  • Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Recently, the coverage of urban forests has been rapidly decreasing as the cities are created and expanding. Consequently, there arise urban problems such as heat island effect, urban flooding, urban desertification and so on. In this context, green roof systems is considered to be an efficient alternative to deal with these problems. However, it is difficult to apply green roof to new buildings since the majority of the buildings in cities are already constructed and the demand for new building constructions is not high enough. Therefore, it should be considered to apply green roof system to existing buildings for resolving various problems. This study evaluates heating and cooling energy consumption based on the combination of passive design factors such as wall, roof, window insulation in addition to a green roof system applied to an existing house by using an energy simulation program. Total 8 potential improvement cases are developed. Each case is applied to the same house with different insulation standard for simulations. Through the analysis of the simulated cases with the chosen test house, it is confirmed that heating energy consumption decreases as improvement cases are applied, but cooling energy consumption is relatively not much affected by each improvement case. In addition, when each improvement case is applied to already highly insulated house, the effect of thermal energy improvement decreases while the same improvement that is applied to the case with low insulated house tends to yield higher improvement rate.

An Analysis of Energy Reduction Effects in Housing According to Green Roof (옥상녹화에 따른 공동주택 에너지 저감효과 분석 연구)

  • Kim, Ji-Hyeon;Son, Hyeong-Min;Kwon, Hyuck-Sam;Kim, Jong-Gon;Lee, Bum-Sik
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.299-305
    • /
    • 2016
  • This study aims to provide basic materials for expanding application of green roof afforestation by analyzing structures' energy consumption reduction effects according to green roof afforestation as a planning means to cope with climate change. As the subjects, recently completed apartment buildings and service facilities of apartment houses where green roof afforestation was applied were selected. green roof afforestation of Extensive Green Roof(soil depth: 20cm) and Semi-Intensive Green Roof(soil depth: 40cm) in construction types was applied and design builders were utilized in order to compare energy reduction amount according to the application of green roof afforestation. According to the analysis result, all the buildings had energy reduction effect when green roof afforestation was applied.

Developing the Construction Guideline for ZEB Based on Air-tightness of Public Buildings in Korea (국내 비주거용 건물의 기밀성능 측정 결과를 통한 기밀 시공 가이드라인 개발)

  • Bae, Minjung;Choi, Gyeongseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.69-74
    • /
    • 2020
  • Since the design Standard for Energy Conservation in Building was implemented in 2008 for the first time, building elements such as window and door should satisfy the minimum criteria to apply for a building. Though its regulation does not cover the whole building yet, recent demand to reduce energy consumption in building sector grows rapidly year by year and also draws a lot of interest to ensure the whole building level. For example, a Zero energy building, one of low-energy buildings, requires a customized solution to resolve the air leakage issue to meet the standards in achieving the high level of air tightness. In this study, six non-residential buildings were tested by fan pressurization method to observe the air tightness of whole building to suggest the construction guideline for air tightness of low-energy building. Five out of six tested buildings showed 0.27 to 1.16 h-1 of number of air changes except one community center. These buildings were carefully constructed not only for building planning but also for parts where there was a concern of air leakage, thereby securing high levels of air-tightness. The construction skills were developed as a checklist to manage and supervise the construction site. It is our suggestion to use this checklist at construction sites for ZEB with the high level of air-tightness.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Economic Comparison of Medium Capacity and Multi Boiler System Applied to Military Officer Housing (군간부 숙소에 적용한 중용량 및 멀티보일러 시스템의 경제성 비교)

  • Kim, Min-yong;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • In midst of electrical energy consumption on the rise due to the industrial development and the improved quality of living, medium capacity and multi boilers which use gas that is comparatively low cost and can be supplied reliably are simulated for energy consumption using the partial load data obtained from the experiment. Economic analysis that considers initial and operation costs is carried out based on the Annual equal payment method.

Analysis of Energy Saving Effect of the Residential BESS Connected to the Balcony-PV in Apartment Houses (공동주택 발코니 PV 연계 가정용 BESS의 에너지 절감 효과 분석)

  • Kim, Cha-Nyeon;Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.21-31
    • /
    • 2020
  • The government mandates gradually zero energy building and Photovoltaic power generation systems installed in buildings are emerging as the most realistic alternative to increase the independence rate of building energy. In this study, we propose a method to reduce the power consumption of households by increasing the PV capacity of balconies and applying the method used the charged electric power stored in batteries after sunset. In order to evaluate the electric power energy savings of the residential BESS, a balcony PV 1.2 kW and a battery pack 2 kWh were installed for 9 houses in 4 apartments in Seoul and Gyeonggi-do. The BESS is charged when the balcony PV is generated electric power, and when solar power generation is finished, it supplies power to the electric appliances connected to the load. As a result of installing the solar PV module 1.2 kW and 2 kWh class BESS for 3 households located in Seoul and Gyeonggi-do, the average electric power consumption saving rate was 40%. The reduction in electricity consumption in the case of zero generation surplus power by maximizing the utilization rate of BESS has been improved to about 53%. Therefore, in order to increase the self-sufficiency rate of electric energy in apartment houses, it is effective to increase the solar photovoltaic capacity of the balcony and apply the residential BESS. In the future, it is believed that the balcony PV and home BESS will play a key role in achieving mandatory zero-energy housing.

Households' Characteristics in Energy Consumption Data from Carbon Emission Monitoring System (CEMS) in Sejong City, Korea (가구 탄소모니터링 시스템에 의한 탄소배출특성 - 세종시 첫마을을 대상으로 -)

  • Leem, Yountaik;Lee, Sang Ho
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.55-65
    • /
    • 2013
  • Korean Government has developed Sejong City as a new administration city. This city of future was planned and designed toward one of the most eco-friendly city on the basis of ICTs. To attain this object, a carbon emission monitoring system (CEMS) was designed and installed as a part of u-city service which provides various information anytime and anywhere to enrich the people's quality of life. In this paper, at first, the structure and functions of CEMS are introduced. This system is consist of 5 parts - data collection from user and linked public DBs, transforming data into meaningful information for the policy makers, system-user interfacing via statistical tables and graphs, and system maintenance. This system can be operated by the citizen participation through whole the process. With the help of GIS map and graphic interface, statistics of monitored data for both citizen and decision maker provided and after feed-back, they have affected on the behaviour of citizen's energy consumption and related policy as well. By the CEMS, energy consumption data of 124 agreed households were collected during 9 months in 2012. Electricity, gas and water consumption were remote-metered automatically by the system and analysed. This showed that more than 85% of CO2 emission is rely on electricity usage. Furthermore, number of family members and size of house influences on the emission of CO2 by each household together with the life-style of the occupants. Electricity and water consumption showed the seasonal factor while gas consumption represents the number of family members. Even this paper has limitations caused by 9 months of data collection, it shows the policy directions to reduce the emission of CO2 focusing on the house size and number of family members of each households. With the result of this research, life-style of the generation of dwellers should be investigated and the CO2 emission characteristics of other housing type as well for the data building for future policy making.

The Effect of Changes of the Housing Type on Long-Term Load Forecasting (가족구성형태의 변화가 주택용 부하의 장기 전력수요예측에 미치는 영향 분석)

  • Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1276-1280
    • /
    • 2015
  • Among the various statistical factors for South Korea, the population has been steadily decreased by lower birthrate. Nevertheless, the number of household is constantly increasing amid population aging and single life style. In general, residential electricity use is more the result of the number of household than the population. Therefore, residential electricity consumption is expected to be far higher for decades to come. The existing long-term load forecasting, however, do not necessarily reflect the growth of single and two-member households. In this respect, this paper proposes the long-term load forecasting for residential users considering the effect of changes of the housing type, and in the case study the changes of the residential load pattern is analyzed for accurate long-term load forecasting.

Analysis of Ventilation Impact in Multi-Family Residential Building Utilizing TOPSIS Method (다기준 의사결정방법을 이용한 공동주택 내 환기장치 종류별 효과분석)

  • Park, Kyung-Yong;Kim, Gil-Tae;Kim, Tae-Min;Ji, Won-Gil;Kwag, Byung-Chang
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.107-113
    • /
    • 2022
  • With increasing airtight building construction aimed at reducing energy consumption, indoor relative humidity is increasing which can lead to condensation and moisture damage in multi-family residential buildings. This has led to increased implementation of mechanical ventilation to control indoor moisture. However mechanical ventilation systems consume additional energy and generate noise. As this leads to occupant discomfort, it is necessary to select a ventilation system that addresses the energy and noise issues. This research measured the ventilation performance, energy consumption, and noise level of mechanical ventilation devices in multi-family residential buildings. TOPSIS, a multi-criteria decision making technique was used to determine appropriate ventilation strategies in addition to occupant ventilation system operation preference.

Energy Performance Evaluation of Apartment Building in Case of Applying a Blind Integrated Window System (전동 블라인드 내장형 창호시스템 적용에 따른 공동주택 에너지 성능평가 연구)

  • Choi, Gyeong-Seok;Sohn, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.429-435
    • /
    • 2010
  • Although recently revised building code requires 15~20% increased thermal insulation performance for window systems, since the code is focusing on winter heat loss, it is not satisfactory to contribute on reducing rapidly rising cooling load in summer. Window systems have great impact on building heat gain and loss. Therefore technological development for window system specialized in shading solar gain in summer is an urgent matter. This study evaluates the performance of sun shading and thermal insulation for blind integrated window system. Also, computer simulation evaluates the effect of heating and cooling energy consumption reduction for an individual unit(floor area of $85m^2$) of a multi-family housing. Physibel Voltra, a heat transfer analysis software, was used to analyse the effect of energy consumption reduction, and the energy load was converted to the cost to compare the actual effect of economical benefit.