• 제목/요약/키워드: Hounsfield Unit(HU)

검색결과 91건 처리시간 0.028초

악골 병소의 켬퓨터 촬영상에서 Hounsfield Unit에 관한 연구 (STUDY FOR HOUNSFIELD UNITS IN COMPUTED TOMOGRAM WITH JAW LESION)

  • 김철환;정종일
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권4호
    • /
    • pp.391-396
    • /
    • 2006
  • The CT number is called Hounsfield unit(HU). Generally HU has a score between +1000 from -1000, and it is standardized usingthe air(-1000), water(0), and compact bone(+1000). Hounsfield Unit to standardize the density in computed tomography using the air and water has been used to analysis of lesion in other medical field. Computed tomography is popular method to analysis of lesion in oral & maxillofacial field but the analysis about density of lesion by Hounsfield unit is still obscure. For this study, computed tomography taken in Dankook University Dental Hospital and Hounsfield unit was measured to compare the difference of jaw bone lesion as cystic lesion, benign tumor, malignant tumor.

A New Hyper Parameter of Hounsfield Unit Range in Liver Segmentation

  • Kim, Kangjik;Chun, Junchul
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.103-111
    • /
    • 2020
  • Liver cancer is the most fatal cancer that occurs worldwide. In order to diagnose liver cancer, the patient's physical condition was checked by using a CT technique using radiation. Segmentation was needed to diagnose the liver on the patient's abdominal CT scan, which the radiologists had to do manually, which caused tremendous time and human mistakes. In order to automate, researchers attempted segmentation using image segmentation algorithms in computer vision field, but it was still time-consuming because of the interactive based and the setting value. To reduce time and to get more accurate segmentation, researchers have begun to attempt to segment the liver in CT images using CNNs, which show significant performance in various computer vision fields. The pixel value, or numerical value, of the CT image is called the Hounsfield Unit (HU) value, which is a relative representation of the transmittance of radiation, and usually ranges from about -2000 to 2000. In general, deep learning researchers reduce or limit this range and use it for training to remove noise and focus on the target organ. Here, we observed that the range of HU values was limited in many studies but different in various liver segmentation studies, and assumed that performance could vary depending on the HU range. In this paper, we propose the possibility of considering HU value range as a hyper parameter. U-Net and ResUNet were used to compare and experiment with different HU range limit preprocessing of CHAOS dataset under limited conditions. As a result, it was confirmed that the results are different depending on the HU range. This proves that the range limiting the HU value itself can be a hyper parameter, which means that there are HU ranges that can provide optimal performance for various models.

콘빔형 전산화단층영상에서 HU에 의한 두경부 팬텀 경조직의 밀도 측정 (Measurement of hard tissue density of head phantom based on the HU by using CBCT)

  • 김문선;김재덕;강동완
    • Imaging Science in Dentistry
    • /
    • 제39권3호
    • /
    • pp.115-120
    • /
    • 2009
  • Purpose : The purpose of this study was to determine a conversion coefficient for Hounsfield Units(HU) to material density ($g\;cm^{-3}$) obtained from cone-beam computed tomography ($CBMercuRay^{TM}$) data and to measure the hard tissue density based on the Hounsfield scale on dental head phantom. Materials and Methods : CT Scanner Phantom (AAPM) equipped with CT Number Insert consists of five cylindrical pins of materials with different densities and teflon ring was scanned by using the $CBMercuRay^{TM}$ (Hitachi, Tokyo, Japan) volume scanner. The raw data were converted into DICOM format and the HU of different areas of CT number insert measured by using $CBWorks^{TM}$. Linear regression analysis and Student t-test were performed statistically. Results : There was no significant difference (P > 0.54) between real densities and measured densities. A linear regression was performed using the density, $\rho$($g\;cm^{-3}$), as the dependent variable in terms of the HU (H). The regression equation obtained was $\rho=0.00072H-0.01588$ with an $R^2$ value of 0.9968. Density values based on the Hounsfield scale was $1697.1{\pm}24.9\;HU$ in cortical bone, $526.5{\pm}44.4\;HU$ in trabecular bone, $2639.1{\pm}48.7\;HU$ in enamel, $1246.1{\pm}39.4\;HU$ in dentin of dental head phantom. Conclusion : CBCT provides an effective option for determination of material density expressed as Hounsfield Units.

  • PDF

Correlation between Bone Mineral Density Measured by Dual-Energy X-Ray Absorptiometry and Hounsfield Units Measured by Diagnostic CT in Lumbar Spine

  • Lee, Sungjoon;Chung, Chun Kee;Oh, So Hee;Park, Sung Bae
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권5호
    • /
    • pp.384-389
    • /
    • 2013
  • Objective : Use of quantitative computed tomography (CT) to evaluate bone mineral density was suggested in the 1970s. Despite its reliability and accuracy, technical shortcomings restricted its usage, and dual-energy X-ray absorptiometry (DXA) became the gold standard evaluation method. Advances in CT technology have reduced its previous limitations, and CT evaluation of bone quality may now be applicable in clinical practice. The aim of this study was to determine if the Hounsfield unit (HU) values obtained from CT correlate with patient age and bone mineral density. Methods : A total of 128 female patients who underwent lumbar CT for back pain were enrolled in the study. Their mean age was 66.4 years. Among them, 70 patients also underwent DXA. The patients were stratified by decade of life, forming five age groups. Lumbar vertebrae L1-4 were analyzed. The HU value of each vertebra was determined by averaging three measurements of the vertebra's trabecular portion, as shown in consecutive axial CT images. The HU values were compared between age groups, and correlations of HU value with bone mineral density and T-scores were determined. Results : The HU values consistently decreased with increasing age with significant differences between age groups (p<0.001). There were significant positive correlations (p<0.001) of HU value with bone mineral density and T-score. Conclusion : The trabecular area HU value consistently decreases with age. Based on the strong positive correlation between HU value and bone mineral density, CT-based HU values might be useful in detecting bone mineral diseases, such as osteoporosis.

조영제 사용이 양성자 Range와 SOBP(Spread-Out Bragg peak)에 미치는 영향 (Influence of Intravenous Contrast Medium on Proton range and SOBP(Spread-Out Bragg peak))

  • 김호식;최승오;김은숙;전상민;염두석
    • 대한방사선치료학회지
    • /
    • 제26권2호
    • /
    • pp.183-189
    • /
    • 2014
  • 목 적 : 조영제는 CT모의치료시 정상조직과 악성종양을 구분하는데 뛰어난 대조도를 제공하기 때문에 CT모의치료에 널리 사용하고 있다. 하지만 조영제는 치료계획 CT에서 일시적으로 존재하기 때문에, 치료계획과 실제 치료 사이에는 Hounsfield Unit(HU)의 차이가 발생하게 된다. 이에 본 연구에서는 조영제 사용으로 인한 HU의 변화가 양성자 치료계획에 미치는 영향을 확인 하고자한다. 대상 및 방법 : 20명의 간암 환자에게서 Phase에 따른 HU값의 변화를 측정하였다, 그리고 5명의 양성자치료계획에서 HU변화에 따른 Range와 Spread-Out Bragg peak(SOBP)의 변화를 살펴보았다. Hand made water phantom을 이용하여 깊이와 HU의 변화에 따른 Range와 SOBP의 변화를 확인하였다. 결 과 : 20명 간암 환자의 HU 변화(Pre contrast, Arterial phase, Porta phase)는 간 조직에서 ($58{\pm}5.7$, $75{\pm}9.5$, $117{\pm}14.6$)이었으며 대동맥에서($40{\pm}6.1$, $279{\pm}49.0$, $154{\pm}22.8$)이었다. 5명의 간암 양성자치료계획에서 HU 변화에 따른 Range 변화는 평균 2.5 mm, SOBP 변화는 평균 1.4 mm 이었다. Hand made water phantom study에서는 HU가 증가함에 따라 Range는 감소되었고 SOBP는 줄어들었다. 결 론 : 양성자 치료계획에서 HU값의 변화는 양성자 Range와 SOBP를 변화시켰다. 실제 양성자 빔에서 HU 변화에 따른 Range와 SOBP의 변화에 대한 추가적인 연구가 필요할 것으로 사료 된다.

Clinical Effect of Transverse Process Hook with K-Means Clustering-Based Stratification of Computed Tomography Hounsfield Unit at Upper Instrumented Vertebra Level in Adult Spinal Deformity Patients

  • Jongwon, Cho;Seungjun, Ryu;Hyun-Jun, Jang;Jeong-Yoon, Park;Yoon, Ha;Sung-Uk, Kuh;Dong-Kyu, Chin;Keun-Su, Kim;Yong-Eun, Cho;Kyung-Hyun, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권1호
    • /
    • pp.44-52
    • /
    • 2023
  • Objective : This study aimed to investigate the efficacy of transverse process (TP) hook system at the upper instrumented vertebra (UIV) for preventing screw pullout in adult spinal deformity surgery using the pedicle Hounsfield unit (HU) stratification based on K-means clustering. Methods : We retrospectively reviewed 74 patients who underwent deformity correction surgery between 2011 and 2020 and were followed up for >12 months. Pre- and post-operative data were used to determine the incidence of screw pullout, UIV TP hook implementation, vertebral body HU, pedicle HU, and patient outcomes. Data was then statistically analyzed for assessment of efficacy and risk prediction using stratified HU at UIV level alongside the effect of the TP hook system. Results : The screw pullout rate was 36.4% (27/74). Perioperative radiographic parameters were not significantly different between the pullout and non-pullout groups. The vertebral body HU and pedicle HU were significantly lower in the pullout group. K-means clustering stratified the vertebral body HU ≥205.3, <137.2, and pedicle HU ≥243.43, <156.03. The pullout rate significantly decreases in patients receiving the hook system when the pedicle HU was from ≥156.03 to < 243.43 (p<0.05), but the difference was not statistically significant in the vertebra HU stratified groups and when pedicle HU was ≥243.43 or <156.03. The postoperative clinical outcomes improved significantly with the implementation of the hook system. Conclusion : The UIV hook provides better clinical outcomes and can be considered a preventative strategy for screw-pullout in the certain pedicle HU range.

임플란트 보철 기능후 고정체 주변 콘빔CT 골밀도 평가 (Bone density around the fixture after function of implant molar prosthesis using CBCT)

  • 정재현;황인택;정병현;김재덕;강동완
    • Imaging Science in Dentistry
    • /
    • 제40권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Purpose : The purpose of this study was to examine the significance of increased bone density according to whether bone grafts were applied using demographic data with Cone Beam Computed Tomography (CBCT) and to compare the bone densities between before and after implant prosthesis using the Hounsfield index. Materials and Methods : Thirty-six randomly selected computed tomography (CT) scans were used for the analysis. The same sites were evaluated digitally using the Hounsfield scale with V-Implant $2.0^{TM}$, and the results were compared with maxillary posterior bone graft. Statistical data analysis was carried out to determine the correlation between the recorded Hounsfield unit (HU) of the bone graft and implant prosthesis using a Mann-Whitney U test and Wilcoxon Matched-pairs test. Results : The bone grafted maxillary posterior teeth showed an increase in the mean values from-157 HU to 387 HU, whereas non-grafted maxillary posterior teeth showed an increase from 62 HU to 342 HU. After implantation, the grafted and non-grafted groups showed significantly higher bone density than before implantation. However, the grafted group showed significantly more changes than the non-grafted group. Conclusion : Bone density measurements using CBCT might provide an objective assessment of the bone quality as well as the correlation between bone density (Hounsfield scale) and bone grafts in the maxillary molar area.

CBCT 영상에서 무치악부 임프란트 매식체 주위골 골밀도(HU)의 정량적 평가 (Quantitative assessment of periimplant bone density (HU) on CBCT image)

  • 구종국;김진수;김재덕
    • Imaging Science in Dentistry
    • /
    • 제38권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Purpose: The primary aims of this retrospective study were to compare subjective bone quality and bone quality based on the Hounsfield scale in different segments of the edentulous jaw, and to establish quantitative and objective assessment of the bone quality. Materials and Methods: Twenty eight randomly selected cone-beam computed tomographic (CBCT) scans were analyzed. For evaluation one hundred and twelve edentulous areas were selected. Implant recipient sites were evaluated visually for Lekholm and Zarb classification. The same sites were subsequently evaluated digitally using the Hounsfield scale with Vimplant$2.0^{TM}$, and the results were correlated with visual classification. Data was subject for statistical analysis in order to determine correlation between recorded HU and the regions of the mouth with the Kruskal-Wallis test. Results: The highest unit/mean density value (311 HU) was found in the anterior mandible, followed by 259 HU for the posterior mandible, 216 HU for the anterior maxilla, and 127 HU for the posterior maxilla. These results demonstrate a strong correlation for HU depending on the region of the mouth (p<0.001). The relationship between HU and type 4 bone was found to be significant (r=0.74). Conclusion: Knowledge of the Hounsfield value as a quantitative measurement of bone density can be helpful as a diagnostic tool by using $CBMercuRa6^{TM}$ with $Vimplant^{TM}$ software.

  • PDF

건강검진에서 지방간 진단의 상복부초음파검사와 간 Hounsfield Units 측정값과의 정확성 분석 (Fatty Liver Diagnostics from Medical Examination to Analyze the Accuracy Between the Abdominal Ultrasonography and Liver Hounsfield Units)

  • 오왕균;김상현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제40권2호
    • /
    • pp.229-235
    • /
    • 2017
  • 상복부초음파검사에서 간실질의 에코 음영증가와 불명확한 혈관경계 등으로 지방간을 진단하는데, 여러 연구들에 의하면 지방간 진단에 84~95%의 특이도와 60~90%의 민감도를 가지나 결과가 검사자에 의존적이어서 차이가 있을 수 있고 지방의 침윤 상태의 정량적인 측정이 불가능하다. 건강검진의 상복부초음파검사와 흉부 전산화단층촬영(computed tomography; CT) 검사를 같은 날에 시행한 수검자중 초음파검사에서 지방간을 진단 받은 환자의 흉부 전산화단층촬영 영상에서 간(Liver) Hounsfield Units(HU)를 측정하여 지방간 진단의 정확성을 연관분석 하고자 하였다. 연구대상 수검자 720명 중 가정의학과 전문의에게 검사를 받고 지방간 판정을 받은 자는 448명으로 62.2%였다. 지방간 판정자의 CT영상에서 간 HU를 측정한 결과 40 HU 이하의 측정값은 720명 중 175명으로 24.3%이며, 초음파에서 진단 받은 448명에 175명 중 173명이 포함되어 98.9%가 일치하였다. 이는 지방간을 초음파로 진단 시 검사자의 주관적 경험과 능력이 병변을 진단하는데 크게 영향을 미친 것으로 생각되며 검진 CT검사에서 간 HU를 측정하여 40 HU 이하는 영상저장을 통하여 지방간 진단 시 참고자료로 활용될 수 있을 것으로 사료된다.

인공결석모형물의 부피와 하운스필드값 측정에 대한 전산화단층촬영기기의 타입과 빔 콜리메이션의 영향 (Effect of Different CT Scanner Types and Beam Collimations on Measurements of Three-Dimensional Volume and Hounsfield Units of Artificial Calculus Phantom)

  • 왕지환;이희천
    • 한국임상수의학회지
    • /
    • 제31권6호
    • /
    • pp.495-501
    • /
    • 2014
  • 본 연구는 다양한 전산화단층촬영기기와 촬영 프로토콜의 차이에 따른 모형물의 부피와 Hounsfield unit (HU) 수치의 차이를 평가하고 이 후 전산화단층촬영술을 이용하여 결석의 부피와 HU 수치를 포함한 다양한 인자들을 평가하고 이 중 체외충격파쇄석술에 의한 결석의 분쇄를 예측할 수 있는 인자를 찾고자 하였다. 다양한 직경의 100 HU 인공종양 5개를 (직경 3.0-12.0 mm) 이용하여 모형물을 만들었으며, 이 모형물의 부피와 HU 수치를 Siemens사의 2채널, GE사의 4채널과 64채널, 그리고 Philips사의 64채널 전산화단층촬영기기를 사용하여 평가하였다. 또한 각각의 전산화단층촬영기기에서 동일한 조건으로 collimation만 thin collimation과 thick collimation으로 변화를 주어 모형물을 촬영한 후 모형물의 부피와 HU 수치를 평가하였다. 평가자간 (inter-observer) 재현성을 평가하기 위해 3명의 수의영상의학 전공의가 연구에 참여하였으며 이중 한 명의 수의사가 평가자내 (intra-observer) 재현성을 평가하기 위해 모형물의 부피와 HU 수치를 2주 간격으로 총 3번 측정하였다. 부피의 평가자간 재현성과 평가자내 재현성은 k=0.9994, k=0.9969로 아주 우수하였으며, HU 수치의 평가자간 재현성과 평가자내 재현성 역시 k=0.9984, k=0.9655로 아주 우수하였다. 다양한 전산화단층촬영기기와 collimation 차이에 따른 부피와 HU 수치의 차이는 모두 통계학적으로 유의적인 차이를 나타내지 않았다. 그러나 부피의 경우 collimation이 얇을수록 부피의 정확도가 증가하는 경향을 보였다. 본 연구 결과를 토대로 향후 진행될 결석의 부피 및 HU 수치의 평가 시 전산화단층촬영기기의 차이에 따른 영향을 받지 않으리라 판단되어 Siemens사의 2채널 전산화단층촬영기기만을 사용하였으며, 비록 통계학적으로 유의적인 차이는 없었지만 부피의 정확도를 더 높이기 위하여 얇은 collimation을 사용하였다.