• 제목/요약/키워드: Hot Tool design

검색결과 75건 처리시간 0.024초

히트 파이프를 이용한 열경화성 나노임프린트 장비용 열판의 온도 균일도 향상 (Improvement of Temperature Uniformity in a Hot Plate for Thermal Nanoimprint Lithography by Installing Heat Pipes)

  • 박규진;양진오;이재종;곽호상
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.74-80
    • /
    • 2016
  • This study presents a thermal device specially designed for thermal nanoimprint lithography equipments, which requires the capability of rapid heating and cooling, high temperature uniformity and the material strength to endure high stamping pressure. The proposal to meet these requirements is a planar-type hot plate extensible to a large area, in which long circular cartridge heaters and heat pipes are installed inside in parallel. The heat pipes are connected to the outside water cooling chamber. A hot plate made of stainless steel is fabricated with a dimension $240mm{\times}240mm{\times}20mm$. Laboratory experiments are conducted to examine the thermal performance of the hot plate. The results illustrate that the employment of heat pipes leads to a notable enhancement of temperature uniformity in the device and provides an efficient heat delivery from the hot plate to outside. It is verified that the suggested hot plate could be a feasible thermal tool for thermal nanoimprint lithography, satisfying the major design requirements.

Hexagonal 인서트용 열간압출 금형설계 (Die Design of Hot Extrusion for Hexagonal Insert)

  • 권혁홍;이정로
    • 한국공작기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.32-37
    • /
    • 2002
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

나노임프린트 장비용 대면적 열판 열설계를 위한 수치 연구 (A NUMERICAL STUDY ON THERMAL DESIGN OF A LARGE-AREA HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY)

  • 박규진;이재종;곽호상
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.90-98
    • /
    • 2016
  • A numerical study is conducted on thermal performance of a large-area hot plate specially designed as a heating and cooling tool for thermal nanoimprint lithography process. The hot plate has a dimension of $240mm{\times}240mm{\times}20mm$, in which a series of cartridge heaters and cooling holes are installed. The material is stainless steel selected for enduring the high molding pressure. A numerical model based on the ANSYS Fluent is employed to predict the thermal behavior of the hot plate both in heating and cooling phases. The PID thermal control of the device is modeled by adding user defined functions. The results of numerical computation demonstrate that the use of cartridge heaters provides sufficient heat-up performance and the active liquid cooling in the cooling holes provides the required cool-down performance. However, a crucial technical issue is raised that the proposed design poses a large temperature non-uniformity in the steady heating phase and in the transient cooling phase. As a remedy, a new hot plate in which heat pipes are installed in the cooling holes is considered. The numerical results show that the installation of heat pipes could enhance the temperature uniformity both in the heating and cooling phases.

대형 티타늄 합금 용기의 고온 금형 성형 공정 개발 (Development of Hot die Forging Process for Large-size Titanium Alloy Container)

  • 권일근;김대순;박태동;박홍석;홍성석;심인옥
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.50-58
    • /
    • 2010
  • In order to successfully implement hot die forging process for the large-size titanium alloy products, it is necessary to devise a customized heating method for the billets and the die tools, as well as the die tool design. This study aims at establishing a hot die forging process of the large-size titanium alloy container products by applying the warm die, semi-hot die and hot die forging process step-wise. To accomplish this purpose, forging mechanism and the die tools were designed considering the strength of die materials at the given die heating temperature. The movable heating devices for the billet and the die tools were also introduced to prevent overcooling of billet and die tools. To verify the applicability of the designed forging process, real-size forging tests were carried out and the quality of forged products, including dimension, surface condition, microstructure and the mechanical properties was evaluated.

장력제어를 위한 게인 스케줄링 (Gain Scheduling for Tension Control)

  • 이동욱;박성한;안병준;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.505-509
    • /
    • 2002
  • The looper control of hot strip finishing mill is one of the most important control item In hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. The gain scheduling is to break the control design process into two steps. First, one designs local linear controllers based on linerizations of the nonlinear system at several different operating conditions. Second, a global nonlinear controller for the nonlinear system is obtained by interpolating.

  • PDF

Eigenstructure Assignment for a Looper Control System

  • Lee, Dong-Wook;Ahn, Byoung-Joon;Park, Sung-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.68.3-68
    • /
    • 2001
  • We describe the looper controller design for a hot strip mill. The looper is to control the strip tension which influences on the width of the strip. It is very important to control the looper control of the hot strip mill, but difficult to control the looper, because there exists mutual interaction among strip gauge, looper angle, and strip tension. In this paper, we present the modeling for the looper of a hot strip mill to control the tension of the strip and suggest a eigenstructure assignment method. The eigenstructure assignment is useful tool that allows the designer to satisfy damping, settling time, and mode decoupling specifications directly by choosing eigenvalue and eigenvectors. Desired eigenvalue and eigenvector are chosen to satisfy the desired responses.

  • PDF

열간단조용 금형형의 수명예측기법 개발 (The Development of Life Prediction Method for Hot Forming Dies)

  • 이진호;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 금형가공 심포지엄
    • /
    • pp.54-59
    • /
    • 1998
  • In this study, two kinds of life prediction method for hot forming die are developed . One is empirical method requiring some experiment that evaluate thermal softening of die material accoring to operating conditions. The other is analyticl method that calcuate wear quantity of die occuring during the forming process. Wear is a predominant factor as well as plastic deformation and heat checking . And, these methods are applied to prodict tool life real die producting part for automobile. Thus , the applicability and the accuracy of the presented methods are investigated. Using the verified life prediction method above , optimal blocker die design minimizing the finisher die is done.

  • PDF

자동변속기용 부품의 에너지 절감을 위한 최적 설계 연구 (A Study on the Optimum Design for Energy Saving of an Auto Transmission Part)

  • 이학선;김태형;김선현;홍의창;이정환
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.181-186
    • /
    • 2015
  • Many in the industrial world that consume high amounts of energy are trying to reduce energy when manufacturing their products. Energy saving during manufacturing is a cost reduction. Reduced cost is necessary for profit improvement. The Piston Under Drive Brake used in the current study is an automotive transmission part. The original machining after hot forging was changed to machining after cold forging of a plate in order to save energy and cost. Two extrusion shapes along the outer diameter caused decreased tool life because of the interrupted cut during turning. Therefore, a thickness reduction of two extrusion areas in the outer diameter was needed. The current study suggests an effective way to reduce the thickness of interrupted cut by using progressive blanking.

FEM을 이용한 24MVA 몰드변압기의 Hot-spot 위치 분석 연구 (Analysis on the Hot-spot Temperature Location of a 24MVA Cast Resin Transformer by FEM)

  • 김영배;하정우;신판석
    • 조명전기설비학회논문지
    • /
    • 제26권9호
    • /
    • pp.26-32
    • /
    • 2012
  • This paper calculates the core and copper losses as heating sources of a 24MVA cast resin transformer, and analyzes the thermal distribution of the transformer to find out its hot-spot area by FEM program. Since the winding of the transformer is composed with many series and parallel circuits, the analyzing model of the winding is simplified and modelled by axi-symmetric domain. As the results, the maximum temperature is estimated by $137^{\circ}C$ in the upper part of the low-voltage winding. The maximum temperature has discrepancy of approximately $10^{\circ}C$, which is able to be considered as an acceptable error range in the design stage of power transformers. For the overall pattern of the temperature distribution is almost same as test results, the analyzing method can be a useful tool to find out a hot-spot area of the winding.

방사형기저함수망을 이용한 열간 사상압연의 압연하중 예측에 관한 연구 (A Study on the Prediction for Rolling Force Using Radial Basis Function Network in Hot Rolling Mill)

  • 손준식;이덕만;김일수;최승갑
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.368-373
    • /
    • 2003
  • A major concern at present is the simultaneous control of transverse thickness profile and flatness in the finishing stages of hot rolling process. The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and the design of mill equipment to improve productivity and quality. However, many factors make the mathematical analysis of the rolling process very complex and time-consuming. In order to overcome these problems and to obtain an accurate rolling force, the predicted model of rolling force using neural networks has widely been employed. In this paper, Radial Basis Function Network(RBFN) is applied to improve the accuracy of rolling force prediction in hot rolling mill. In order to verify and analysis the performance of applied neural network, the comparison with the measured rolling force and the predicted results using two different neural networks - RBFN, MLP, has respectively been carried out. The results obtained using RBFN neural network are much more accurate those obtained the MLP.

  • PDF