DOI QR코드

DOI QR Code

Development of Hot die Forging Process for Large-size Titanium Alloy Container

대형 티타늄 합금 용기의 고온 금형 성형 공정 개발

  • 권일근 (현대중공업 산업기술연구소, 울산대학교 자동차선박기술대학원) ;
  • 김대순 (현대중공업 산업기술연구소) ;
  • 박태동 (현대중공업 산업기술연구소) ;
  • 박홍석 (울산대학교 기계자동차공학과) ;
  • 홍성석 (국방과학연구소) ;
  • 심인옥 (국방과학연구소)
  • Published : 2010.02.01

Abstract

In order to successfully implement hot die forging process for the large-size titanium alloy products, it is necessary to devise a customized heating method for the billets and the die tools, as well as the die tool design. This study aims at establishing a hot die forging process of the large-size titanium alloy container products by applying the warm die, semi-hot die and hot die forging process step-wise. To accomplish this purpose, forging mechanism and the die tools were designed considering the strength of die materials at the given die heating temperature. The movable heating devices for the billet and the die tools were also introduced to prevent overcooling of billet and die tools. To verify the applicability of the designed forging process, real-size forging tests were carried out and the quality of forged products, including dimension, surface condition, microstructure and the mechanical properties was evaluated.

Keywords

References

  1. K. Shi, D. B. Shan, W. C. Xu, Y. Lu, 2007, Near net shape forming process of a titanium alloy impeller, J. Mater. Process. Technol., Vol. 187, pp. 582-585. https://doi.org/10.1016/j.jmatprotec.2006.11.033
  2. L. A. Elagina, M. Ya. Brun, B. F. Brailovskaya, 1980, Isothermal forging of titanium alloys, Met. Sci. Heat Treat, Vol. 22, pp. 447-452. https://doi.org/10.1007/BF00693653
  3. O. Voigtlaender, G. Guenther, 1983, Isothermal precision forging-aero-engine compressor blades made in titanium alloys, Metallurgia, Vol. 50, pp. 322-326.
  4. J. T. Yeom, J. S. Im, N. K. Park, T. J. Shin, S. M. Hwang, S. S. Hong, 2003, Determination and analysis of interface heat transfer coefficients in hot forming of Ti-6Al-4V, Trans. of Metall. Mater. Vol. 12, pp. 370-375.
  5. Z. Hu, J. Brooks, T. A. Dean, 1998, Interfacial heat transfer coefficient in hot die forging of titanium alloy, Proceedings of the Institution of Mechanical Engineers. Part C, Mech. Eng. Sci., Vol. 212, pp.485-496. https://doi.org/10.1243/0954406981521385
  6. T. J. Shin, Y. H. Lee, J. T. Yeom, 2005, Process optimal design in non-isothermal backward extrusion of a titanium alloy by the finite element method, Comput. Methods Appl. Mech. Engrg., Vol. 194, pp. 3838-3869. https://doi.org/10.1016/j.cma.2004.10.002
  7. Rong-Shean Lee, Huan-Chang Lin, 1998, Process design based on the deformation mechanism for the non-isothermal forging of Ti–6Al–4V alloy, J. Mater. Process. Technol., Vol. 79, pp. 224-235. https://doi.org/10.1016/S0924-0136(98)00016-8
  8. M. Tamizifar, H. Omidvar, S. M. Salehi, 2002, Effect of processing parameters on shear bands in non-isothermal hot forging of Ti-6Al-4V, Mater. Sci. Technol., Vol.18, pp. 21-29. https://doi.org/10.1179/026708301125000168
  9. Jeoung Han Kim, N. S. Reddy, Jong Taek Yeom, Jae Keun Hong, Chong Soo Lee, Nho-Kwang Park, 2009, Microstructure Prediction of Two-Phase Titanium Alloy during Hot Forging Using Artificial Neural Networks and FE simulation, Met. Mater. Int., Vol. 15, pp. 427-437. https://doi.org/10.1007/s12540-009-0427-7

Cited by

  1. Design of die forging process of thrust shaft for large marine diesel engine using floating die concept vol.12, pp.3, 2011, https://doi.org/10.1007/s12541-011-0066-z