• Title/Summary/Keyword: Host-pathogen

Search Result 417, Processing Time 0.027 seconds

Sputum Processing Method for Lateral Flow Immunochromatographic Assays to Detect Coronaviruses

  • Aram Kang;Minjoo Yeom;Hyekwon Kim;Sun-Woo Yoon;Dae-Gwin Jeong;Hyong-Joon Moon;Kwang-Soo Lyoo;Woonsung Na;Daesub Song
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.11.1-11.10
    • /
    • 2021
  • Coronavirus causes an infectious disease in various species and crosses the species barriers leading to the outbreak of zoonotic diseases. Due to the respiratory diseases are mainly caused in humans and viruses are replicated and excreted through the respiratory tract, the nasal fluid and sputum are mainly used for diagnosis. Early diagnosis of coronavirus plays an important role in preventing its spread and is essential for quarantine policies. For rapid decision and prompt triage of infected host, the immunochromatographic assay (ICA) has been widely used for point of care testing. However, when the ICA is applied to an expectorated sputum in which antigens are present, the viscosity of sputum interferes with the migration of the antigens on the test strip. To overcome this limitation, it is necessary to use a mucolytic agent without affecting the antigens. In this study, we combined known mucolytic agents to lower the viscosity of sputum and applied that to alpha and beta coronavirus, porcine epidemic diarrhea virus (PEDV) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, spiked in sputum to find optimal pretreatment conditions. The pretreatment method using tris(2-carboxyethyl)phosphine (TCEP) and BSA was suitable for ICA diagnosis of sputum samples spiked with PEDV and MERS-CoV. This sensitive assay for the detection of coronavirus in sputum provides an useful information for the diagnosis of pathogen in low respiratory tract.

Research on Immune Responses Induced by Salmonella Typhimurium Infectionin CRIP1-Deficient Condition (CRIP1결손조건 하에서 Salmonella Typhimurium 감염에 의해 유도되는 면역반응에 관한 연구)

  • Dongju Seo;Se-Hui Lee;Sun Park;Hyeyun Kim;Jin-Young Yang
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Salmonella is a common food-borne intracellular bacterial pathogen that has triggered significant public health concerns. Salmonella hosts' genetic factors play a pivotal role in determining their susceptibility to the pathogen. Cysteine-rich intestinal protein 1 (CRIP1), a member of LIM/double zinc finger protein family, is widely expressed in humans, such as in the lungs, spleen, and especially the gut. Recently, CRIP1 has been reported as a key marker of several immune disorders; however, the effect of CRIP1 on bacterial infection remains unknown. We aimed to elucidate the relationship between Salmonella infection and CRIP1 gene deficiency, as Salmonella spp. is known to invade the Peyer's patches of the small intestine, where CRIP1 is highly expressed. We found that CRIP1-deficient conditions could not alter the characteristics of bone marrow-derived myeloid cells in terms of phagocytosis on macrophages and the activation of costimulatory molecules on dendritic cells using ex vivo differentiation. Moreover, flow cytometry data showed comparable levels of MHCII+CD11b+CD11c+ dendritic cells and MHCII+F4/80+CD11b+ macrophages between WT and CRIP1 knockout (KO) mice. Interestingly, the basal population of monocytes in the spleen and neutrophils in MLNs is more abundant in a steady state of CRIP1 KO mice than WT mice. Here, we demonstrated that the CRIP1 genetic factor plays dispensable roles in host susceptibility to Salmonella Typhimurium infections and the activation of myeloid cells. In addition, differential immune cell populations without antigen exposure in CRIP1 KO mice suggest that the regulation of CRIP1 expression may be a novel immunotherapeutic approach to various infectious diseases.

Studies on the Host Range of Colletotrichum dematium Isolated from Anthracnose of Pepper and Toxic Metabolites Produced by the Pathogen (고추 탄저병균(炭疽病菌) Colletotrichum dematium의 기주범위(寄主範圍) 및 대사독소(代謝毒素)에 관(關)한 연구(硏究))

  • Kang, Hi Wang;Yu, Seung Hun;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.26-37
    • /
    • 1987
  • This studies were conducted to investigate pathgenicity and host range of Colletotrichum dematium isolated from anthracnose of pepper, and phytoxicity of its culture filtrate and the partially purified toxin. The results obtained were as follows. 1. Investigation on the host range of C. dematium has revealed that pepper as well as soybean, tomato, spinach, and beet were highly susceptible, egg plant and water melon were moderately susceptible and stone leek was slightly suceptible, but no symptoms were produced on carrot, tabacco, cucumber and melon. 2. The culture filtrates of C. dematium in Czapeck dox liquid media were toxic to leaves of pepper and caused necrosis and wilting of the plant. The toxicity of culture filtrates was most active at 15 days after fungal growth in Czapeck dox liquid media and the toxin productivity in still culture was higher than that in shaking culture. 3. The partially purified toxic substance was isolated from the culture filtrates by the acetone precipitation method. When cuttings of various pepper cultivars were placed in the toxin solutions, suceptible cultivars and resistant cultivars were equally toxic and showed necrosis and wilting of the leaves. 4. Several other plants such as soybean, tomato and carrot were also affected with the toxin solution by shoot cutting bioassay and showed veinal necrosis, leaf spots and wilting of the shoots. 5. The acetone precipitation toxin affected seed germination of pepper, cucumber, sesame and egg plant and inhibited the growth of root and hypocotyl of the seedlings.

  • PDF

Phagocytosis of Drug-Resistant Mycobacterium Tuberculosis by Peripheral Blood Monocytes (결핵균의 약제내성과 말초혈액단핵구의 결핵균 탐식능에 관한 연구)

  • Park, Jae-Seuk;Kim, Jae-Yeal;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.470-478
    • /
    • 1997
  • Background : Phagocytosis is probably the first step for mycobacteria to be virulent in host because virulent strains are more readily phagocytosed by macrophage than attenuated strains. According to the traditional concept, multi-drug resistant strains have been regarded as less virulent. However, this concept has been challenged, since recent studies(reported) showed that the degree of virulence and drug-resistance is not related. The purpose of this study is to evaluate whether the phagocytic activity of M.tuberculosis by peripheral blood mononuclear cells(PBMC) is different according to drug-resistance or host factor. To evaluate this, we estimated the difference of phagocytic activity of drug-resistant and drug-sensitive M.tuberculosis and also estimated the phagocytic activity of PBMC from intractable tuberculosis patients and healthy controls. Methods : PBMC from ten intractable tuberculosis patients and twelve healthy control, and three different strains of heat-killed M.tuberculosis, ie, ADS(all drug sensitive), MDR(multi-drug resistant), and ADR(all drug resistant) were used. After incubation of various strains of M.tuberculosis with PBMC, the phagocytic activity was evaluated by estimating proportion of PBMC which have phagocytosed M.tuberculosis. Results : Drug-resistant strains of M.tuberculosis were phagocytosed easily than drug sensitive strains(Percentage of PBMC phagocytosed M.tuberculosis in healthy control : ADS : $32.3{\pm}2.9%$, ADR : $49.6{\pm}3.4%$, p = 0.0022, Percentage of PBMC phagocytosed M.tuberculosis in intractable tuberculosis patients : ADS : $34.9{\pm}3.6%$, ADR : $50.7{\pm}4.5%$, p = 0.0069). However, there was no difference in phagocytic activity of PBMC from healthy control and intractable tuberculosis patients. Conclusion : Drug-resistant strains of M.tuberculosis were phagocytosed easily than drug sensitive strains and host factors does not seems to influence the phagocytosis of M.tuberculosis.

  • PDF

Isolation and Identification of Antagonistic Bacterium Active against Sclerotinia sclerotioum Causing Sclerotinia Rot on Crisphead Lettuce (결구상추 균핵병균(Sclerotinia sclerotioum)에 대한 길항세균의 분리 및 동정)

  • Kim, Han-Woo;Lee, Kwang-Youll;Baek, Jung-Woo;Kim, Hyun-Ju;Park, Jong-Young;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.331-336
    • /
    • 2004
  • The fungus genus Sclerotinia contains a number of important plant pathogens. Vegetable growers in our country are probably most familiar with Sclerotinia sclerotiorum, the causes of sclerotinia rot on crisphead lettuce. S. sclerotiorum has a wide host range which can include lettuce as well as crops such as broccoli, cabbage, carrots, celery, beans, peppers, potatoes, stocks, and tomato. Some fungicides, including benomyl, are effective in some crops, but not all. So, we isolated a antagonistic bacteria that are active on sclerotinia rot caused by S. sclerotiorum and that can be used to control it. About 702 strains had been isolated from soil around plant roots in the field. Ten strains showed strong antifungal activity against S. sclerotiorum. In pot test for antagonistic activity, A-7 strain showed high control value against the pathogen when compared with others. The strain was, therefore, selected as a biocontrol candidate against sclerotinia rot and its biochemical properties and 16S rDNA sequence was analyzed. The A-7 strain was highly related to Bacillus subtilis and B. amyloliquefaciens. To confirm precise identification, we had performed gyr A gene sequences analysis. Its sequence had 96% similarity with B. amyloliquefaciens. Consequently, the isolate was identified as B. amyloliquefaciens A-7.

Pathotype Classification of Korean Rice Blast Isolates Using Monogenic Lines for Rice Blast Resistance (벼 도열병 단일 저항성 유전자를 이용한 도열병균의 병원형 분류)

  • Kim, Yangseon;Kang, In Jeong;Shim, Hyeong-Kwon;Roh, Jae-Hwan
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The rice blast fungus is a representative model phytopathogenic fungus in which Gene-for-Gene interaction with host rice is applicable. After 1980, eight differential varieties have been constructed and classified to analyze the race of rice blast isolates in Korea. However, since there is limited information about the genetic background of rice blast resistance genes within the Korean differentials, scientific analysis on the emergence of new race or resistance break down was difficult. Recently, a differential system has been developed using monogenic resistance lines to understand the interactions of pathogen race and rice resistance genes. In this study, a total of 50 isolates were selected from four different races isolated in Korea, and they were inoculated into monogenic lines. As a result, the isolates in the same race classified by the Korean differential system reacted differently in single monogenic lines. This suggests that the isolates categorized as the same race group contains different avirulence genes and furthermore, it is presumed that the Korean differential system is difficult to provide useful information for breeding program. For this reason, introduction of differential system using monogenic resistance lines is required in addition to the current system.

Detection of a Microsporidium, Nosema ceranae, from Field Population of the Bumblebee, Bombus terrestris, via Quantitative Real-Time PCR (서양뒤영벌 야외개체군에서 Real-Time PCR을 이용한 Nosema ceranae의 검출)

  • Lee, Dae-Weon
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2013
  • The bumblebee, Bombus terrestris, has played an important role as one of the alternative pollinators since the outbreak of honeybee collapse disorder. Recently, pathogens and parasites such as viruses, bacteria and mites, which affect the life span and fecundity of their host, have been discovered in B. terristris. In order to detect the microsporidian pathogen, Nosema spp. in the field populations of B. terristris, we collected adults and isolated their genomic DNA for diagnostic PCR. The PCR primers specific for Nosema spp. were newly designed and applied to gene amplification for cloning. Only small subunit ribosomal RNA (SSU rRNA) gene of N. ceranae was successfully amplified among examined genes and sequenced, which indicates that N. ceranae mainly infects the examined field population of B. terristris. To detect of SSU rRNA gene, two regions of SSU rRNA gene were selected by primary PCR analysis and further analyzed in quantitative real-time PCR (qRT-PCR). The qRT-PCR analysis demonstrated that SSU rRNA of N. ceranae was detected at concentration as low as $0.85ng/{\mu}l$ genomic DNA. This result suggests that the detection via qRT-PCR can be applied for the rapid and sensitive diagnosis of N. ceranae infection in the field population as well as risk assessment of B. terristris.

Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation

  • Son, Ui-han;Dinzouna-Boutamba, Sylvatrie-Danne;Lee, Sanghyun;Yun, Hae Soo;Kim, Jung-Yeon;Joo, So-Young;Jeong, Sookwan;Rhee, Man Hee;Hong, Yeonchul;Chung, Dong-Il;Kwak, Dongmi;Goo, Youn-Kyoung
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (${\pi}$ and ${\Theta}_w$), and Tajima's D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima's D values for vir 27 (1.08530, P>0.1), vir 12 (2.89007, P<0.01), and vir 21 (0.40782, P>0.1) were positive, and that of vir 4 (-1.32162, P>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.

Efficient Screening Method for Resistance of Cucumber Cultivars to Fusarium oxysporum f. sp. cucumerinum (오이 덩굴쪼김병에 대한 효율적인 저항성 검정 방법)

  • Lee, Ji Hyun;Kim, Jin-Cheol;Jang, Kyoung Soo;Choi, Yong Ho;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2014
  • The study was performed to establish an efficient screening method for resistant cucumber to Fusarium oxysporum f. sp. cucumerinum. The isolate KR5 was identified as F. oxysporum f. sp. cucumerinum based on molecular analyses of ITS and TEF genes and host-specificity test on cucurbits including melon, oriental melon, cucumber, and watermelon. Then four cucumber and two rootstock cultivars showing different resistance degrees to the Fusarium wilt pathogen KR5 were selected. And development of Fusarium wilt of the six cultivars according to several conditions, including incubation temperature after inoculation, inoculum concentration, root wounding, and growth stages of seedlings, was investigated. Disease severity of Fusarium wilt on the resistant cultivars was changed with incubation temperatures after inoculation. The resistant cultivars showed the higher resistance when inoculated plants were kept at 25 or $30^{\circ}C$ than at $20^{\circ}C$. Among four different growth stages of the seedlings, seven-day-old seedling represented the most difference of resistance and susceptibility to Fusarium wilt. From above results, we suggest that an efficient screening method for resistant cucumber to F. oxysporum f. sp. cucumerinum is to dip the non-cut roots of seven-day-old seedlings in spore suspension of $1.0{\times}10^6-1.0{\times}10^7$ conidia/ml and to transplant the seedling into a non-infected soil, and then to incubate the inoculated plants in a growth room at $25^{\circ}C$ for 3 weeks to develop Fusarium wilt.

Selection of Representative Magnaporthe oryzae Isolates and Rice Resistant Gene Types for Screening of Blast-resistant Rice Cultivars (우리나라 벼 도열병균의 대표 균주 및 벼의 저항성 유전자형 선발)

  • Goh, Jaeduk;Kim, Byung-Ryun;Lee, Se-Won;Roh, Jae-Hwan;Shin, Dong-Bum;Jeung, Ji-Ung;Cho, Young-Chan;Han, Seong-Sook
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.243-253
    • /
    • 2013
  • Rice blast is one of the most serious disease threatening stable production of rice. Breeding of resistant cultivars has been used as the most effective and useful method to controll rice blast caused by Magnaporthe oryzae. To collect rice blast isolates in fields and test their pathogenicity on new cultivars are important for establishment of new resistant cultivars breeding program of rice. Pathotypes of Korean rice blast isolates have been categorized to Korean differential race system developed in 1985. However, it is little known about genetic background of Korean differential cultivars, so that it is hard to understand for relationship between each pathogen and each host plant at genetic level. In this study, we suggested necessity of a new differential system by analyzing pathogenic responses between 24 monogenic rice lines and 200 Korean rice blast isolates. In addition, we determined the nine representative resistant genes based on the resistance responses of the monogenic lines to rice blast isolates, indexed resistant responses of the monogenic lines to ten representative rice blast isolates and selected 30 Korean representative rice blast isolates proper to Korean system. We think the newly developed differential race system can be broadly used to select resistant cultivars to rice blast in Korea.