DOI QR코드

DOI QR Code

Pathotype Classification of Korean Rice Blast Isolates Using Monogenic Lines for Rice Blast Resistance

벼 도열병 단일 저항성 유전자를 이용한 도열병균의 병원형 분류

  • Kim, Yangseon (Crop Cultivation & Environment Research Division, National Institute of Crop Science) ;
  • Kang, In Jeong (Crop Cultivation & Environment Research Division, National Institute of Crop Science) ;
  • Shim, Hyeong-Kwon (Crop Cultivation & Environment Research Division, National Institute of Crop Science) ;
  • Roh, Jae-Hwan (Crop Cultivation & Environment Research Division, National Institute of Crop Science)
  • 김양선 (농촌진흥청국립식량과학원) ;
  • 강인정 (농촌진흥청국립식량과학원) ;
  • 심형권 (농촌진흥청국립식량과학원) ;
  • 노재환 (농촌진흥청국립식량과학원)
  • Received : 2017.05.08
  • Accepted : 2017.05.15
  • Published : 2017.09.30

Abstract

The rice blast fungus is a representative model phytopathogenic fungus in which Gene-for-Gene interaction with host rice is applicable. After 1980, eight differential varieties have been constructed and classified to analyze the race of rice blast isolates in Korea. However, since there is limited information about the genetic background of rice blast resistance genes within the Korean differentials, scientific analysis on the emergence of new race or resistance break down was difficult. Recently, a differential system has been developed using monogenic resistance lines to understand the interactions of pathogen race and rice resistance genes. In this study, a total of 50 isolates were selected from four different races isolated in Korea, and they were inoculated into monogenic lines. As a result, the isolates in the same race classified by the Korean differential system reacted differently in single monogenic lines. This suggests that the isolates categorized as the same race group contains different avirulence genes and furthermore, it is presumed that the Korean differential system is difficult to provide useful information for breeding program. For this reason, introduction of differential system using monogenic resistance lines is required in addition to the current system.

벼 도열병은 벼를 재배하는 지역에서는 가장 중요한 병 중 하나이다. 특히, 벼 도열병균은 기주인 벼와 Gene-for-Gene 상호작용이 적용 가능한 대표적인 모델 식물병원성 곰팡이다. 우리나라는 1980년 이래로 벼 도열병균의 레이스를 분석하기 위해 8개의 판별 품종을 이용한 시스템을 구축하여 분류하였다. 그러나 이 판별 품종이 어떤 저항성 유전자를 가지고 있는지에 관해 명확한 정보가 없어 새로운 레이스의 출현이나 병 저항성 붕괴 등에 대하여 과학적인 분석이 어려웠다. 최근 병원균의 레이스와 벼의 저항성 유전자의 상호작용 이해를 돕기 위해 LTH 품종에 단인자 저항성 계통을 각각 다르게 도입한 판별시스템이 개발되었다. 본 연구에서는 우리나라의 1995년부터 2015년까지 분리된 4개의 다른 레이스 KI101, KI201, KI401 및 KJ101로부터 총 50개 균주를 선발하여 LTH 품종에 기반한 단인자 저항성 계통에 접종하여 그 결과를 이전 레이스와 비교 분석해 보았다. 그 결과 한국형 판별시스템으로 분류된 동일 레이스내의 균주들이 단인자 계통에서 서로 다른 반응을 보였다. 이 결과 동일 레이스에 속하는 균주들이 서로 다른 비병원성 유전자를 지닌 것을 의미하며, 더 나아가 새로운 저항성 벼 품종 육종에 유용한 정보를 제공하기 어려울 것으로 추정되었다. 이 연구 결과 현재의 판별시스템과 더불어 단인자 저항성 품종을 통한 판별시스템 도입이 요구되었다. 이 연구 결과는 향후 한국의 판별시스템 개발에 기초 자료로 활용 될 수 있을 것이다.

Keywords

References

  1. Ahn, C. J. and Chung, H. S. 1962. Studies on the physiologic races of rice blast fungus, Pyricularia oryzae in Korea. Seoul Natl. Univ., J. Biol. Agric. Ser. B 11: 77-83.
  2. Bohnert, H. U., Fudal, I., Dioh, W., Tharreau, D., Notteghem, J. L. and Lebrun, M. H. 2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16: 2499-2513. https://doi.org/10.1105/tpc.104.022715
  3. Farman, M. L., Eto, Y., Nakao, T., Tosa, Y., Nakayashi, H., Mayama, S. and Leong, S. A. 2002. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol. Plant-Microbe Interact. 15: 6-16. https://doi.org/10.1094/MPMI.2002.15.1.6
  4. George, M. L., Nelson, R. J., Zeigler, R. S. and Leung, H. 1998. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88: 223-229. https://doi.org/10.1094/PHYTO.1998.88.3.223
  5. Gilmour, J. 1973. Octal notation for designating physiologic races of plant pathogens. Nature 242: 260. https://doi.org/10.1038/242260a0
  6. Han, S. S., Ryu, J. D., Shim, H. S., Lee, S. W., Hong, Y. K. and Cha, K. H. 2001. Breakdown of resistance of rice cultivars by new race KI-1117a and race distribution of rice blast fungus during 1999-2000 in Korea. Res. Plant Dis. 7: 86-92. (In Korean)
  7. Hayashi, N. and Fukuta, Y. 2009. Proposal for a new international system of differentiating races of blast (Pyricularia oryzae Cavara) by using LTH monogenic lines in rice (Oryza sativa L.). JIRCAS Working Report 63: 11-15.
  8. IRRI. 1988. Standard Evaluation System for Rice (SES). International Rice Research Institute, Los Banos, Philippines.
  9. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P. and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19: 4004-4014. https://doi.org/10.1093/emboj/19.15.4004
  10. Kang, S., Sweigard, J. A. and Valent, B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 8: 939-948. https://doi.org/10.1094/MPMI-8-0939
  11. Kim, Y., Go, J., Kang, I. J., Shim, H.-W., Shin, D. B., Heu, S. and Roh, J.-H. 2016. Distribution of rice blast disease and pathotype analysis in 2014 and 2015 in Korea. Res. Plant Dis. 22: 264-268. (In Korean) https://doi.org/10.5423/RPD.2016.22.4.264
  12. Lee, E. J., Ryu, J. D., Yeh, W. H., Han, S. S. and Lee, Y. H. 1987. Proposal of a new method for differentiating pathogenic races of Pyricularia oryza Cavara in Korea. Research Reports of the Rural Development Administration 29: 206-213.
  13. Li, Y. B., Wu, C. J., Jiang, G. H., Wang, L. Q. and He, Y. Q. 2007. Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breed. 126: 541-547. https://doi.org/10.1111/j.1439-0523.2007.01409.x
  14. Li, W., Wnag, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., Wang, Z., Wnag, G., Han, B., Wang, Z. and Zhou, B. 2009. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant-Microbe Interact. 22: 411-420. https://doi.org/10.1094/MPMI-22-4-0411
  15. Mundt, C. C. 2014. Durable resistance: a key to sustainable management of pathogens and pests. Infect. Genet. Evol. 27: 446-455. https://doi.org/10.1016/j.meegid.2014.01.011
  16. Orbach, M. J., Farrall, L., Sweigard, J. A., Chrmley, F. G. and Valent, B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12: 2019-2032. https://doi.org/10.1105/tpc.12.11.2019
  17. Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y. H. 2008. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 98: 436-442. https://doi.org/10.1094/PHYTO-98-4-0436
  18. Tsunematsu, H., Yanoria, M. J. T., Ebron, L. A., Hayashi, N., Ando, I., Kato, H., Imbe, T. and Khush, G. G. 2000. Development of monogenic lines of rice for blast resistance. Breed. Sci. 50: 229-234. https://doi.org/10.1270/jsbbs.50.229