• 제목/요약/키워드: Host-level Flash Translation Layer

검색결과 4건 처리시간 0.019초

Implementation of Memory Efficient Flash Translation Layer for Open-channel SSDs

  • Oh, Gijun;Ahn, Sungyong
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.142-150
    • /
    • 2021
  • Open-channel SSD is a new type of Solid-State Disk (SSD) that improves the garbage collection overhead and write amplification due to physical constraints of NAND flash memory by exposing the internal structure of the SSD to the host. However, the host-level Flash Translation Layer (FTL) provided for open-channel SSDs in the current Linux kernel consumes host memory excessively because it use page-level mapping table to translate logical address to physical address. Therefore, in this paper, we implemente a selective mapping table loading scheme that loads only a currently required part of the mapping table to the mapping table cache from SSD instead of entire mapping table. In addition, to increase the hit ratio of the mapping table cache, filesystem information and mapping table access history are utilized for cache replacement policy. The proposed scheme is implemented in the host-level FTL of the Linux kernel and evaluated using open-channel SSD emulator. According to the evaluation results, we can achieve 80% of I/O performance using the only 32% of memory usage compared to the previous host-level FTL.

Optimizing Garbage Collection Overhead of Host-level Flash Translation Layer for Journaling Filesystems

  • Son, Sehee;Ahn, Sungyong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.27-35
    • /
    • 2021
  • NAND flash memory-based SSD needs an internal software, Flash Translation Layer(FTL) to provide traditional block device interface to the host because of its physical constraints, such as erase-before-write and large erase block. However, because useful host-side information cannot be delivered to FTL through the narrow block device interface, SSDs suffer from a variety of problems such as increasing garbage collection overhead, large tail-latency, and unpredictable I/O latency. Otherwise, the new type of SSD, open-channel SSD exposes the internal structure of SSD to the host so that underlying NAND flash memory can be managed directly by the host-level FTL. Especially, I/O data classification by using host-side information can achieve the reduction of garbage collection overhead. In this paper, we propose a new scheme to reduce garbage collection overhead of open-channel SSD by separating the journal from other file data for the journaling filesystem. Because journal has different lifespan with other file data, the Write Amplification Factor (WAF) caused by garbage collection can be reduced. The proposed scheme is implemented by modifying the host-level FTL of Linux and evaluated with both Fio and Filebench. According to the experiment results, the proposed scheme improves I/O performance by 46%~50% while reducing the WAF of open-channel SSDs by more than 33% compared to the previous one.

Anticipatory I/O Management for Clustered Flash Translation Layer in NAND Flash Memory

  • Park, Kwang-Hee;Yang, Jun-Sik;Chang, Joon-Hyuk;Kim, Deok-Hwan
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.790-798
    • /
    • 2008
  • Recently, NAND flash memory has emerged as a next generation storage device because it has several advantages, such as low power consumption, shock resistance, and so on. However, it is necessary to use a flash translation layer (FTL) to intermediate between NAND flash memory and conventional file systems because of the unique hardware characteristics of flash memory. This paper proposes a new clustered FTL (CFTL) that uses clustered hash tables and a two-level software cache technique. The CFTL can anticipate consecutive addresses from the host because the clustered hash table uses the locality of reference in a large address space. It also adaptively switches logical addresses to physical addresses in the flash memory by using block mapping, page mapping, and a two-level software cache technique. Furthermore, anticipatory I/O management using continuity counters and a prefetch scheme enables fast address translation. Experimental results show that the proposed address translation mechanism for CFTL provides better performance in address translation and memory space usage than the well-known NAND FTL (NFTL) and adaptive FTL (AFTL).

  • PDF

A Multi-Level Flash Translation Layer for Large Capacity Solid State Drives

  • Kim, Yong-Seok
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권2호
    • /
    • pp.11-18
    • /
    • 2021
  • SSD의 FTL에서는 호스트로부터 요청된 논리적 페이지 번호를 실제 기록된 플래시 메모리 페이지 번호로 매핑하는 작업을 한다. 매핑 정보를 관리하기 위해서 사용되는 RAM의 용량을 줄이는 것은 매우 중요하다. 기존의 요구기반 FTL에서는 매핑 정보도 플래시 메모리 페이지에 기록하고 그들의 주소만 RAM에 테이블로 관리하는 2단계 방법을 적용하였다. 그러나 SSD의 용량이 수십 테라바이트 수준으로 늘어나고 있으므로 이 방법만으로는 충분하지 않다. 본 논문에서는 소요되는 RAM의 용량을 획기적으로 줄이기 위해서 매핑 정보를 3단계로 관리하는 방법인 ML-FTL을 제안하고 그 성능을 평가하였다. 캐시를 적절히 활용함으로써 기존의 2단계 방법에 비해서 오버헤드가 늘어나는 정도가 미미하다는 것을 확인하였다.