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Abstract

Open-channel SSD is a new type of Solid-State Disk (SSD) that improves the garbage collection overhead

and write amplification due to physical constraints of NAND flash memory by exposing the internal structure of 

the SSD to the host. However, the host-level Flash Translation Layer (FTL) provided for open-channel SSDs in 

the current Linux kernel consumes host memory excessively because it use page-level mapping table to translate 

logical address to physical address. Therefore, in this paper, we implemente a selective mapping table loading 

scheme that loads only a currently required part of the mapping table to the mapping table cache from SSD 

instead of entire mapping table. In addition, to increase the hit ratio of the mapping table cache, filesystem

information and mapping table access history are utilized for cache replacement policy. The proposed scheme is

implemented in the host-level FTL of the Linux kernel and evaluated using open-channel SSD emulator. 

According to the evaluation results, we can achieve 80% of I/O performance using the only 32% of memory 

usage compared to the previous host-level FTL.

Keywords: Open-channel SSD, Memory Management, Caching, Journaling Filesystem, Flash Translation Layer, 

Host-level Flash Translation Layer

1. Introduction

Solid-State Drives (SSDs), a storage device based on NAND flash memory, are rapidly replacing the 

existing Hard-Disk Drives (HDDs) due to its various advantages such as fast I/O performance, low power 

consumption, and shock resistance. However, because of physical constraints of NAND flash memory such as 

erase-before-write , limited erase count and large size of erase block, Flash Translation Layer (FTL) should be 

employed to provide conventional block device interface. The main role of FTL is to hide the characteristics 

of NAND flash memory by performing out-place-update, Logical-to-Physical (L2P) mapping, and garbage 

collection, so that the host can access the SSD through the existing block interface [1, 2]. However, because

useful host information cannot transfer to the FTL in firmware form inside the SSDs, the existing FTL 
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firmware cannot fundamentally solve the reduction in lifespan of SSDs due to the garbage collection and write 

amplification.

Open-channel SSD [3-5] is a new type of SSD that exposes the internal structure of the SSD to the host. 

Therefore, unlike conventional SSDs, FTL functions can be directly performed at the host rather than firmware

level. Note that this kind of FTL is called host-level FTL compared to conventional FTL in the form of the 

firmware. Moreover, because the host-level FTL is performed at the host, it can utilize various useful 

information of the host to optimize FTL [7-9].

In Linux, open-channel SSD is supported by the host-level FTL called Pblk (i.e. Physical Block Device) [6]

which manage L2P address mapping information with page-level mapping table rather than block-level 

mapping table. However, as shown in Figure 1, as the capacity of open-channel SSD increases, the host 

memory is excessively used for storing L2P mapping table. Therefore, memory efficient host-level FTL is 

required for employing extremely large capacity open-channel SSDs.

In this paper, we propose a selectively mapping table loading scheme to reduce memory footprint of host-

level FTL for open-channel SSDs. The proposed scheme loads only a currently required part of the mapping 

table into the mapping table cache in the host memory instead of loading the entire mapping table. In addition, 

by using the filesystem information for the replacement policy of the mapping table cache, its miss ratio is 

minimized. The proposed scheme is implemented by modifying the host-level FTL for open-channel SSDs of 

Linux and evaluated with Fio and Filebench. According to the evaluation results, the proposed scheme can 

achieve 80% of I/O performance with just 32% of memory usage in comparison with existing one. Moreover, 

the additional optimization utilizing host information for cache replacement policy increases I/O performance 

of the proposed scheme by 10%.

The remainder of this paper organizes as follows. Section 2 introduces open-channel SSDs and host-level 

FTL of Linux. Section 3 describes the design overview and detailed implementation of the proposed scheme. 

The experiment results are presented in Section 4. At last, Section 5 gives the conclusion of this paper.

2. Background

2.1 Open-channel SSDs

Open-channel SSD is proposed as a new class of SSDs to overcome shortcomings of conventional block 

Figure 1. Host memory usage for mapping table of Open-channel SSD
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device interface SSDs. The open-channel SSD exposes the internal structure of the SSD to the host, so that the 

host can directly manage underlying NAND flash memory for open-channel SSDs. Figure 2 briefly shows the 

internal structure of open-channel SSD. As shown in the figure, an open-channel SSD is composed of multiple 

channels, each of which has multiple Parallel Units (PUs). The PU is also represented as a Logical Unit Number

(LUN) in a host-level FTL and used as the basic unit of parallel I/O processing in open-channel SSDs. In other 

words, each PU can process I/O requests independently from other PUs. Each PU consists of multiple chunks, 

each of which has multiple blocks. The chunks in the same location of each PU are grouped together to form 

a line. That is, the total number of lines of the open-channel SSD is the same as the number of chunks of each 

PU. A line is the basic unit that manages meta information in open-channel SSD.

In Linux, LightNVM subsystem [5] supports a host-level FTL called Pblk [6] for open-channel SSDs. The 

filesystem can transfer I/O requests to the open-channel SSD through Pblk while using the conventional block 

device interface. The Pblk handles page-level L2P mapping table management, address translation, and 

garbage collection. Since the entire page-level mapping table of the open-channel SSD should be loaded to 

host memory at the booting time, the memory usage increases linearly as the capacity of SSD increases.

Therefore, in this paper, we implemented a memory efficient host-level FTL for open-channel SSDs.

3. Design and Implementation

3.1 Design Overview

In this section, we introduce overview of the proposed selective mapping table loading scheme. As you can 

see in Figure 3, the proposed scheme manages page-level mapping table of the open-channel SSD with three 

structures as follows: mapping blocks managed inside SSD, a global directory and mapping table cache on the 

host memory. The entire page-level L2P mapping table of open-channel SSD is divided into certain size of the 

block, mapping block, then stored into the SSD. Note that the size of mapping block is the same as the cache 

block size (e.g. 64KB) of the mapping table cache.

Figure 2. Internal structure of Open-channel SSD
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The mapping table cache exists on the host memory and consists of multiple cache blocks. The total size of 

the mapping table cache is specified as a multiple of the cache block size defined by the user. The main role 

of the mapping table cache is to load mapping blocks currently required for translate the logical addresses of 

I/O requests into physical addresses of NAND flash memory. Moreover, as cache space runs out over time, 

the mapping table cache reserves free space in the cache by reclaiming low-priority cache blocks. The cache 

block replacement policy will be described in the next section.

The global directory, as the core of the proposed scheme, has various metadata for managing mapping 

blocks and the mapping table cache. Each entry of the global directory represents the information which 

consists of five metadata about each mapping block as follows: identifier of the mapping block (id), the 

popularity of each mapping block (hotness), the line where the mapping block exists (line #), the offset of the 

mapping block within the line (offset #), and a pointer to the corresponding cache block in the mapping table 

cache.

An identifier (id) of each mapping block is a unique value used to indicate the corresponding entry in a 

global directory. Because an identifier of mapping block is assigned sequentially, host can easily find identifier 

of mapping block including certain logical block number. 

�ℎ� ������ �� ������� ������ = �
���_���������

�����_���������
�              (1)

The number of mapping blocks follows Equation 1. Here, �2�_��������� and ���ℎ�_��������� indicates 

total size of page-level L2P mapping table of the open-channel SSD and user defined size of cache block, 

respectively. For example, in the case of a 1TB open-channel SSD, the total size of the page-level mapping 

Figure 3. Overview of the selective mapping block loading scheme
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table is 1GB for a 4 bytes entry size and 4KB page size. Therefore, if user defined size of cache block is 64KB, 

the total number of mapping blocks is 16,384. By using this, we can get the size of the global directory required 

for 1TB open-channel SSD. For convenience of calculation, assuming the size of each entry of global directory

is 40 Bytes, the amount of host memory required to build the global directory is 640KB, which is negligible.

The hotness refers to how often the host uses a particular cached mapping block. Note that the higher hotness, 

the more often the mapping block is used to translate LBN(Logical Block Number) to PPN(Physical Page 

Number). In the proposed scheme, the hotness of the mapping block is used as the priority of the cache block. 

Therefore, a mapping block with low hotness value has a higher probability of being reclaimed to the SSD

compared to other cached mapping blocks.

In addition, the line number (line #) and the offset (offset #) of global directory is used to specify the location 

of the mapping block on the open-channel SSD. The line number refers to the physical line number of open-

channel SSD indicating a set of chunks having consecutive physical blocks. On the other hand, the offset refers 

the relative offset of mapping block within the line. For example, “line#=5, offset=3” means that the location

of the mapping block is 3rd one within the line 5.

Next, the pointer value in the global directory points to the cache block of mapping table cache. If the 

pointer value is not null, it means that the corresponding mapping block has been loaded to the mapping table

cache. Therefore, we can directly translate the LBN to PPN without loading the mapping block including 

required mapping information. Otherwise, if the pointer value is null, the corresponding mapping block should 

be loaded into mapping table cache. At last, after required mapping block is loaded, the bitmap managing 

cache block status is updated. The next section introduces how to handle mapping table cache misses.

3.2 Handling Mapping Table Cache Miss

When certain LBN is requested from the block layer, the overall operation of the proposed scheme is shown 

in Figure 4. First, the entry of global directory for the mapping block corresponded to requested LBN is found 

by using the identifier of mapping block. The identifier of the mapping block can be obtained by dividing the 

LBN by the number of entries within single mapping block. For example, in Figure 4, because single mapping

block has 4 entries, the identifier of the mapping block corresponded to the requested LBN (=7) is one. Then, 

the pointer value of the global directory should be checked to find if the mapping table has been loaded into 

Figure 4. Cache miss handling process for mapping table cache
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mapping table cache. If the pointer value is not null, cache hit has occurred. The LBN can be translated into 

PPN using the mapping block of the mapping table cache.

On the other hand, if the pointer value is null, a cache miss has occurred. Therefore, the required mapping 

block should be loaded to an empty cache block in the mapping table cache from SSD by using the line number 

and offset of the global directory. However, if there is no free cache block in the mapping table cache, the 

mapping block with the lowest hotness among the cached mapping blocks is reclaimed to the SSD to free up 

cache space. Note that the hotness allocation policy and the cache replacement policy will be described in the 

next section. At last, the mapping block including the requested LBN is retrieved and loaded into the mapping 

table cache from the SSD. 

3.3 Hotness Allocation Policy

As mentioned above, since the proposed scheme stores only a part of the mapping table in the mapping table 

cache, I/O performance can be reduced due to mapping table cache miss. Therefore, miss ratio of mapping 

table cache should be minimized as much as possible. In the case of the existing cache management policies, 

the cache miss ratio can be decreased by determining the priority of cache blocks according to the temporal 

and spatial locality [10]. The proposed method allocates the hotness of each mapping block by utilizing host-

side information.

In this paper, we noted that the access pattern of the data block and journal block of the journaling filesystem 

are different. Figure 5 briefly shows journaling process of Ext4 journaling filesystems [11]. Here, we assumes 

that Ext4 is set to Journal mode, not Ordered mode. As you can see the figure, the journal is written into 

separate journal space in storage device, not the entire block device. When a write request occurs, the journal 

(i.e. log for write request) should be written to the journal area before the requested file data is written to the

storage device. Therefore, logical blocks including journal area are frequently overwritten because journal area 

is used as a circular buffer. In other words, LBN of journal area is more frequently accessed than data area. 

Moreover, journal writes take a large portion of the total write volume [12]. Consequently, if the mapping 

information for the journal area does not remain in the mapping table cache, the I/O performance is reduced 

because of excessive mapping table cache misses. Therefore, in this paper, mapping information for journal 

area is priorly kept in the cache as much as possible by using journal information of the host.

Figure 5. Journaling process of Ext4 filesystem
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Moreover, to prevent thrashing and optimize cache replacement policy, when a mapping block is placed in 

the mapping table cache, a positive weight is given to the hotness to prevent the cache block from being 

selected as a victim block as soon as it is loaded. Otherwise, if the temporal locality of the mapping block is 

too low, a negative weight is given to the hotness because the mapping block is expected to not be used soon.

4. Experimental Results

For the performance evaluation, a virtual open-channel SSD is emulated in the QEMU virtual machine [13]. 

The host and the virtual machine environments used in the experiment are described in Table 1 and Table 2, 

respectively. As can be seen in Table 1, the host machine for running the QEMU virtual machine was equipped 

with two Intel Xeon CPUs and 32GB DRAM, and a high-performance NVMe SSD, Intel DC P4500, was used 

as the backend storage for the virtual open-channel SSD. 

Table 2 shows that the QEMU virtual machine generated on the host machine has 16 CPU cores and 16GB 

DRAM. Moreover, the virtual open-channel SSD is created in a size of 400GB with a single channel, 1000 

lines, and 16MB size of chunk. Therefore, the existing host-level FTL of Linux requires 400MB host memory 

to store page-level mapping table of the virtual open-channel SSD.

Table 2. QEMU virtual machine specification

Components Specification

# of Cores 16

Memory 16GB

OCSSD Capacity 400GB

# of Channels 1

# of Lines 1000

Size of Chunk 16MB

OS (Kernel) Ubuntu 16.04.5 LTS (Linux Kernel 4.16)

The proposed scheme is implemented on Pblk, host-level FTL of Linux for open-channel SSD. The 

performance evaluation uses both Fio [14] and Filebench [15] benchmarks. Figure 6(a) shows I/O performance

of Fio random write workload according to pareto distribution with various size of mapping table cache. Pareto 

distribution is used because it can generate access pattern with locality. 

As you can see in the figure, the proposed scheme achieves 80% I/O performance compared to existing 

Pblk while using only 32% memory usage. Figure 6(b) shows the I/O performance of Filebench OLTP 

workload with Ext4 filesystem. The experiment was performed with fixed the mapping table cache size of 

64MB to verify the effectiveness of proposed mapping table cache management policy using journal 

information. Note that mapping table cache size is reduced because Filebench OLTP workload size is 

relatively small compared to Fio. As a result, the I/O performance of open-channel SSD is improved by 10% 

Table 1. Hardware and software specification

Components Specification

CPU Intel Xeon CPU E5-2620 v4 @ 2.10 GHz

Memory 32GB

Storage Intel SSD DC P4500 1.0TB

OS (Kernel) Ubuntu 18.04.2 LTS (Linux Kernel 5.3)
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by giving higher hotness to the journal data.

5. Conclusion

In this paper, we implemented a selective mapping table loading scheme that can reduce the host memory

usage of open-channel SSDs. The proposed scheme loads only a currently required part of the mapping blocks

to the mapping table cache in the host memory, so that memory overhead can be dramatically reduced. 

Moreover, to decrease mapping table cache miss ratio, cache replacement policy utilizes filesystem 

information and access history of mapping blocks. The proposed scheme is implemented on host-level FTL of 

Linux for open-channel SSD and evaluated with Fio and Filebench. According to the evaluation results, 

proposed selective mapping table loading scheme can achieve 80% I/O performance with just 32% memory 

usage in comparison with existing one. Moreover, cache replacement policy increases 10% of I/O performance 

of the proposed scheme by utilizing journal information and access history.
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