International Journal of I nternet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)
http://dx.doi.org/10.7236/1 JI1BC.2021.13.2.27

1JIBC 21-2-5

Optimizing Gar bage Collection Overhead of Host-level Flash Translation L ayer
for Journaling Filesystems

Sehee Sonand Sungyong Afn

IMaster Student, School of Computer Science andhEaging, Pusan National University, Korea
2Assistant Professor, School of Computer ScienceEaggheering, Pusan National University,
Korea
light13751@pusan.ac.kfsungyong.ahn@pusan.ac.kr

Abstract

NAND flash memory-based SSD needs an internal a@ffviFlash Translation Layer(FTL) to provide
traditional block device interface to the host besa of its physical constraints, such as eraserbefoite
and large erase block. However, because usefuldidstinformation cannot be delivered to FTL thrbube
narrow block device interface, SSDs suffer fronaaety of problems such as increasing garbage ctbe
overhead, large tail-latency, and unpredictable l&@ency. Otherwise, the new type of SSD, openrgian
SSD exposes the internal structure of SSD to teedoathat underlying NAND flash memory can be mada
directly by the host-level FTL. Especially, I/O @alassification by using host-side information @amieve
the reduction of garbage collection overhead. lis faper, we propose a new scheme to reduce garbage
collection overhead of open-channel SSD by sepayéhe journal from other file data for the jouried
filesystem. Because journal has different lifespéth other file data, the Write Amplification FacttWAF)
caused by garbage collection can be reduced. Thpgsed scheme is implemented by modifying the host-
level FTL of Linux and evaluated with both Fio afidebench. According to the experiment results, the
proposed scheme improves I/O performance by 46%~80ié reducing the WAF of open-channel SSDs by
more than 33% compared to the previous one.

Keywords: Solid-State Disk, Flash Translation Layer, Open+afiel SSD, Journaling Filesystem, EXT4 Filesystem

1. Introduction

Today, in the storage device market, the NAND flagtmory-based Solid-State Disk (SSD) is rapidly
displacing the traditional storage, Hard Disk Dri¢DD) because of its various advantages suchws lo
latency, high density, low power consumption anockhresistance. On the other hand, because NAND fla
memory cannot overwrite data in-place, SSD nedadsrial software called Flash Translation Layer (Jid-
provide block device interface to host. The FTL aijgd the data with an out-place update fashion evher
obsolete data is invalidated and new data is writteother location. The invalidated data is pagally

Manuscript Received: January. 27, 2021 / Reviselbrirary. 3, 2021 / Accepted: February. 7, 2021
Corresponding Author: sungyong.ahn@pusan.ac.kr

Tel: +82-51-510-2422, Fax: +82-51-517-2431

Assistant Professor, School of Computer ScienceEagiheering, Pusan National University, Korea

28 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

deleted by garbage collection, another major featdirFTL, to reserves free space. However, becthese
erase unit of NAND flash memory (NAND block) is ntularger than write unit, the valid pages in aimict
block must be copied to another location beforetitey the NAND block. In other words, garbage aiiten

of FTL causes additional writes, which causes perémce degradation and shortened lifespan of tiie SS

Moreover, garbage collection overhead increaseswhert-lived and long-lived data are mixed in same
NAND block. However, because host-side informatidnch is useful for data classification is lost doghe
narrow block device interface, SSDs suffer fromaaety of problems such as garbage collection aasth
large tail-latency, and unpredictable I/O laten¢y]L

Therefore, many studies have been conducted te@ver the limitations of the legacy block interfacel
deliver useful host-side information to the FTLidesthe SSD. The TRIM[3] command which is one & th
earliest studies to overcome the limitations oflégacy block interface has already been standedtdind is
supported successfully in most operating systerdsS8Ds. It is a newly proposed command which heelps
perform garbage collection more effectively by fyitig the SSD that certain data has been deletetthdoy
host. Another notable study is the multi-stream RB$vhich reduces garbage collection overhead by
allocating 1/0 streams with different write pattertio a separate NAND flash area by transferringstf®am
information to the SSD. The multi-stream technigualso included in the latest NVM Express (NVMB) [
standard. However, the existing studies have adtron in that they can still provide very limitedormation.
Therefore, the host-level FTL which directly managiee NAND flash memory of a SSD attracts attention
because it can utilize host side information.

Open-channel SSD[6] is a new type of SSD that cenddmentally overcome the limitations of SSDs
employing an internal FTL by revealing the interalicture of the SSD to the host. In open-cha&is,
the host directly performs FTL features such aa getcement and garbage collection, so that tHenpeance
of SSDs can be optimized through utilizing hosesiaformation such as 1/0O data classification uditey
system information and performance isolation thiowgrkload classification. However, existing th® Btack
of the operating system has not yet utilized thet4sale information. Therefore, in this paper, wepose a
new scheme to reduce garbage collection overheadenf-channel SSD by separating the journal frdmrot
file data for the journaling file system. The prepd scheme is implemented by modifying the hostHEVL
of Linux and evaluated with Fio and Filebench. Adiog to the experiment results, the proposed sehem
improves I/O performance by 46%~50% while decrepgerbage collection overhead of SSD,WAF by more
than 33% in comparison to the previous one.

The remainder of this paper is organized as follo8&ction 2 introduces the open-channel SSD and
journaling system of Ext4 filesystem. Then, Sect®ohriefly shows the previous studies related tersp
channel SSDs. Section 4 describes the design guldnmentation of proposed scheme. Experimental tesul
are presented in Section 5. The conclusion is giv&ection 6.

2. Background

2.1 Open-channel SSD

Open-channel SSD is proposed as a new class of ®S®&rcome shortcomings of conventional block
device interface SSDs [6]. As shown in Figure lifathe case of a conventional SSDs, FTL is impletee
in the form of firmware inside the SSD, so thatah support a block device interface to the hostaAesult,
the host can deliver I/O requests with logical addras if SSDs can update data in-place. On tlee loémd,
as shown in Figure 1(b), the open-channel SSD esthe internal structure of the SSD to the hasthat
the host can directly manage underlying NAND flastmory for open-channel SSDs.

Optimizing Garbage Collection Overhead of Host-level Flash Trandlation Layer for Journaling Filesystems 29

Host Host
ElEX IO (L Host-based FTL
ﬁ ﬁ ﬁ Logical Address (Read/Write) Data Placement 1/0 Scheduling Wear-leveling
FTL Physical Address
(Read/Write/Erase)
Data Placement 1/0 Scheduling Wear-leveling
Chunk Media Error . Chunk Media Error .
Management Management Media Controller Management Management Media Controller
NAND Channel{) @ @ (Read/Write/Erase) NAND Channel@ @ @ (Read/Write/Erase)
NAND Flash Memory NAND Flash Memory
Block I nterface SSD Open-Channel SSD

(@ (b)
Figure 1. (a) Conventional block interface SSD vs. (b) Open-channel SSD[7]

The LightNVM[7], Linux subsystem, has been providedsupport open-channel SSD since kernel 4.4.
The LightNVM has host-level FTL called Pblk (i.@hysical Block Device) which provides a block devic
interface to user programs, while internally perforg data placement and garbage collection for tyidg
NAND flash memory. As a result, open-channel SSsteke the following advantages [8].

I/0 Isolation: Since the host knows the internal structure o388, it is able to allocate physically separated
NAND flash memory region for each application pagr As a result, I/O performance interference betwe
different applications can be minimized.

Predictable latency: In the conventional SSDs, long-tail latency ismhacaused by SSD internal operations
such as garbage collection and wear-leveling. Hewanm the open-channel SSD, because the hosthesk c
the status of the internal operations, the conmmietime of I/O requests can be predicted. Moreoifer,
necessary, it is possible to delay garbage cotledt achieve the desired I/O completion time.
Software-Defined Non-Volatile Memory: Host-level FTL can be optimized for specified kgagion by
integrating FTL functions into the application.

2.2 Ext4 Journaling Filesystem

Ext4 filesystem [9, 10], the default filesystem lohux, employs a journaling system to maintain the
consistency and stability of the filesystem. Inrjmaling systems, when a write operation is requedtes
information about the write operation (called asrj@l) should be recorded in a separated jourrggbmneof
storage before writing the actual file data inte ftorage device. Therefore, even if a systemr&ibecurs
during processing the write operation and causesntonsistency of the filesystem, the filesystean be
quickly restored by using the journal written i flournal region.

In the Linux, the Journaling Block Device2 (JBD23ethon performs journaling for Ext4 filesystem
periodically or by thésync()system call. JBD2 performs journaling in thregstét first, the journal for file
write operation is recorded in the journal regieparated from the file data region of the filesyst&econd
step isCommitindicating that the journal is successfully reaatdAfterCommit the file data is finally written
in the file data area of the storage devic€lreckpoinistep. Note that the journal record can be deletied
file data writing is completed.

As mentioned above, a journal of Ext4 filesysterdéketed in most cases after the correspondingldita
is completely written to file data region of therstge. However, since the SSD performs an out-plpdate,

30 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

the deleted journal is not actually deleted from RPAND flash memory but remains as an invalid pége
will be deleted during the next garbage collectidsishown in Figure 2, if the NAND pages includgeneral
file data Data pagé and the NAND pages including journdio(irnal pagé are recorded together in same
NAND block, the number of valid pages copied dumgagbage collection may increase.

Host Block Interface SSD Host Block Interface SSD
s 8 N ~ \\ 4 % N, \\‘
S J1 2 SRR
ol J1 ol J4 -
= - = - D1 High GC
£ o = o} D2 Overhead
- HHE el ==
5 5
- < | I | write(D4,D5) | _ s
<} o Free i <} Ja
S| p2 = journal (J4,J5) ! 2| p2 = _
@ E | Thee | i @ =
D3 D3
£ B | [Free 2 7
a T a T
o I:I T Free o T D5
[I:I Free T Free
Free Free
Logical Physical ’ Logical Physical
Address Space Address Space Address Space Address Space

NAND page
Figure 2. Garbage collection overhead without journal separation

The reason is that file data and journal have wiffelifespan. However, in the existing block ifdee
SSDs, information other than the logical addressotbe transferred from the host to the SSDs, o F
firmware cannot distinguish file data and journgherefore, in this paper, we propose a scheme which
separates journal from file data in journalingdiletem to reduce garbage collection overhead of-ocphannel
SSDs.

3. Related Work

There have been several studies on optimizing 1&0ksby using open-channel SSDs. The one of the
earliest studies is optimizing Key-Value(KV) stdoethe open-channel SSDs. The KV stores based gn Lo
Structured Merge Trees (LSM-tree)[11] such as LBB§12] and RocksDB[13] is attracting attention besa
of its good read speed and sequential write prpgbgt is suitable for SSD. However, LSM-tree skoul
periodically merge key-value pairs which have s&mgs. This operation, callecbmpaction is the main
reason of deterioration of the LSM-tree performaasd generates many read/write operations.

In the previous study, it is proposed to classifg files constituting the LSM-tree according toithe
characteristics and allocate them to a separateNfi@6h memory region. The proposed method carease
the throughput of KV store by more than four timésile reducing garbage collection overhead[14].0Als
RocksDB have been optimized for open-channel SSpategrating garbage collection of FTL to the
compaction process of LSM-tree[15]. In the paseé tompaction process and garbage collection were
performed separately because the KV store couldknotv the internal structure of the SSD. However,
previous studies show that the garbage collecti@nhead of open-channel SSD can be reduced by atieg
both operations.

Another studies are about the performance isolagohnique by using open-channel SSDs in the multi-
tenant environment. In a cloud environment, sevegahnts sharing SSDs are suffered from severe 1/O

Optimizing Garbage Collection Overhead of Host-level Flash Trandlation Layer for Journaling Filesystems 31

performance interference and large tail-latencyeré&fore, it is proposed to allocate an independeannel
or die to each tenant using an open-channel S$iake the most of the internal parallelism of th®3&iile
minimizing the performance interference betweemmés[16]. According to the evaluation results, @
storage system increase throughput by up to 1.éstiamd provides 3.1 times lower tail latency coragdo
legacy SSDs.

4. Design and | mplementation

4.1 Design Overview

As mentioned in Section 2, journal has differefgspan from file data in the journaling filesysteath as
Ext4. Therefore, it is better to write l@urnal pagesanddata pagesn separate NAND blocks to reduce
garbage collection overhead. However, the FTL fiamvof conventional block interface SSD cannot
distinguish journal from file data because it hasnformation about the filesystem. However, in tase of
open-channel SSDs, the host-level FTL can achleyageful information from filesystems. So, in tégstion,
we propose host-level FTL that separates jourrmahffile data to reduce garbage collection overhmad
utilizing the information delivered from filesystem

Figure 3 shows the basic idea and effectiveneggagosed scheme. As you can see in the figure, the

proposed scheme writgsurnal pagego a separate NAND blockgurnal Bloch.

Host Open-channel SSD Host Open-channel SSD o’\\l/grﬁeid
TN) N . o S —_]
S ! \ <} ! e \
- HEHossss:]+ HEYHssssse
5 5 Free 2 8 || 9t
- k) Free = | Eedzaad [Free]
S Journal Blocks S Journal Blocks
C = write (D4, D5) | _ =
%’ g journal (J4, J5) % 7
o T D1 Free |IC——> IO T D1 D5
g T D2 Free g E: D2 Free
% I:I = D3 Free % I:I = D3 Free
2 B 2 3
i I:I j? F‘ree Free iz I:I % I?4 Free
\ File Data Blocks / . File Data Blocks Y
Logical Physical Logical Physical
Address Space Address Space Address Space Address Space

NAND page:
Figure 3. Garbage collection overhead with separating journal on open-channel SSDs

Therefore Journal blockare highly likely to be erased without valid pagpy during garbage collection
because journal is sequentially deleted &@tezckpoinstep of journaling. As a result, the Write Ampléteon
Factor (WAF) which directly affects the lifespantbé SSDs can be reduced by using proposed scinotes.
that WAF represents the ratio of the amount of tamttil writes generated by garbage collection,taedarger
this value, the higher the overhead of garbagecttin and the shorter the lifespan of the SSD.

4.2 Implementation

In this section, we describe the operation of heatl FTL supporting Ext4 journal separation foreap
channel SSDs as can be seen in Figure 4. The mogobeme is implemented by using following twadiess.
First, a method is needed to deliver the informmatimat can distinguish journal from file data tostitevel

32 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

[Ext4 Journaling Filesystem]

" Journal write buffer bio File Data write buffer?

Pblk (Host-level FTL) .
>>>>> D1 D5
BOGOON Free D2 Free
Free D3 Free
Free D4 Free

Journal Blocks Open-channel SSD File Data Blocks ;

.. -

Figure 4. Design for journal separating host-level FTL

FTL from filesystem. Second, we need a way to manegrnals separate from file data in host leval FT

At first, to deliver journal identification infornti@n to the host-level FTL, we employ a new fladigating
journal in thestruct bia Here,struct biois Linux kernel structure describing block I/O wegt. The journal
flag is set to inform that the write request is jmirnal when the journal is committed by JBD2. aAsesult,
the host-level FTL can allocatestauct bioof which journal flag is set to thjeurnal block

Second, the proposed scheme uses two circularrbuie handle journal writes and file data writes
separately. Write requests are first written towhiée buffer inside host-level FTL. When the fig®ace in the
buffer is exhausted, they are requested to the &Since by host-level FTL. At this time, if jourraatd file
data are mixed in same buffer, it is difficult toite them separately. Therefore, we employ two spavrite
buffers for journal and file data, respectivelyth@lugh additional memory space should be consuinéed,
negligible compared to system memory size.

5. Experimental Results

5.1 Experimental Environments

The proposed scheme is implemented in Pblk, hest-FeTL of Linux, and Ext4 filesystem of Linux kerh
4.16 and evaluated on Ubuntu 18.04 emulated on QBEMNfthal machine. The detailed experimental
environments are described in Table 1. As can ba gethe table, open-channel SSD is emulated en th

Table 1. Experimental environments

Component Specification
CPU Intel Xeon CPU E5-2620 v4 @ 2.10GHz x 2
Host Hardware Memory 64GB DDR4
SSD Intel DC P4610 1.6TB NVMe SSD
CPU 8 cores
QEMU virtual machine Memory 4GB
Operating system Ubuntu 18.04
of Group 2
of PU per Group 4
. # of Chunk per PU 60
Virtual OCSSD # of Sectors per Chunk 4096
Sector Size 4KB

Total Capacity 7.5GB

Optimizing Garbage Collection Overhead of Host-level Flash Trandlation Layer for Journaling Filesystems 33

backend storage device, Intel DC P4610 NVMe SSidigg Virtual Open-channel SSD[17] because real
open-channel SSD devices are not officially reldags. Moreover, Fio[18] and Filebench[19] are ufmd
performance evaluation with the configuration diveat in Table 2.

Table 1. Workload characteristics

Benchmark Parameters Values
I/O size (rand/seq) 4KB / 1MB
Fio I/O depth 32
Total I/O size 2GB
Fileserver Mean file size 128KB
I/0O size 1MB
Mean append size 16KB
Webserver Mean file size 16KB
Filebench I/0O size 1MB
Mean append size 16KB
MongoDB File size 16KB
Mean 1/O size 16KB
Read 1/0O size 1MB

5.2 Evaluation Results

Figure 5(a) shows normalized 1/0O bandwidth of theppsed journal separation FTLS-PbIk compared
to the original host-level FTLRPIK) for Fio workload. As you can see the figui&-Pblkincreases the 1/0
bandwidth by 50% for both random and sequentiaiesriMoreover, Figure 5(b) shows that the perfoicean
improvement oflS-Pblkis due to reduced garbage collection overheadoriang to the figure, WAF oS-
Pblk is only up to 67% compared to previous one. lidatks that the proposed journal separation policy
dramatically decreases the garbage collection e@aetiof host-level FTL.

1.80 1.800
<160 [OPBIK | 150 e 146 5 1.600 f--omo- 1525 i 1.497-.4 OPblk
o) =
10} BIS-PON oy S 1400 o] N) | BIS-POIY
Lo
G 1.20 Fommmmmimee b 1200 fomm] e e
@ S 1.001 1.001
O 100 fmm—— g pmmmmmme e § 1.000 f--- T - -
B N o R E e N o L ’;;0.800 S B P - A4
N
5060 Fommemd |-l < 0.600 - N - A e
€ 040 |- - - - - S £ 0400 f-om- - - - -
£ 020 froeies - - - - S 0.200 f--i-- - - - -
0.00 0.000
RandWrite SeqWrite RandWrite SeqWrite
(a) Normalized I/O bandwidth (b) Write amplification factor

Figure 5. Garbage collection overhead for Fio workloads

Similar results are found in the performance eu#dnausing Filebench emulating server workloadguFe
6(a) shows normalized number of operations penslPS) for three different Filebench workloadsyas
can see the figurdS-Pblkdelivered up to 40% improved performance. Morepwethe Figure 6(b), JS-Pblk
shows a WAF close to 1 while Pblk shows WAF abo¥ead the maximum. increases WAF decreased by up
to 41% and the number of VPC pages decreased ffémtd 100%. In the Filebench performance evaluation
results, it is confirmed that WAF is dramaticalgduced for the real-world workloads witB-Pblk

34 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

8 1.80 5.000 4.555
» 160 | OPbIK | . 4500 H OPblk [oo b e m e m e
8 140 [BISPO_ 136 ... 140 G 4.000 [| BISPOKR-womcoooof b
R le4 P 3,500 [rormmmmmmmmmmnn] e
T 1.00 1.00 1.00 2 3.000 Fomimmemimimimimmimimicieid, e
g 1.00 - A e e —] b g 2'500
Oosgot--{ H |-md H foeeef | Fe £~ 1.957
3 £2.000 frmmimrmimmimimn] pmiin -
N 0.60 f--] - - - .- <soo bon1333 L
© L~ 1.001 1.030 1.001
£ 040 - I S) B 1 pe £ 1000 - Rkt Pk R et
o
2020 peos e 8 e 1 b 0.500 }--- ‘ ----------- 1 I R

0.00 0.000

Fileserver Webserver Mongo Fileserver Webserver Mongo
(a) Normalized OPS (b) Write amplification factor

Figure 6. Garbage collection overhead for Filebench workloads

6. Conclusion

Unlike conventional block interface SSDs, the opkannel SSD is a new type of SSD that exposes the
internal structure of the SSD to the host and aldwe host directly to manage underlying the NAN&3H
memory. Therefore, host-level FTL of open-chanr@DSan utilize host-side information to optimize th
performance of SSDs. By classifying hot and colé dasing host information, data placement in NANH3
memory can be optimized to reduce garbage collectierhead. In this paper, we have proposed a stem
reduce the garbage collection overhead of openrehe&8SD by separating the journal of the journafiteg
system from the file data. The proposed schenmmaptemented by modifying the host-level FTL of Liniax
open-channel SSD and evaluated using an emulate@hopen-channel SSD. According to the evaluation
results, the proposed scheme improves I/O bandwigdé#6%~50% while reducing the WAF of open-channel
SSDs by more than 33% compared to the previous Tme results means that by recording the journal of
filesystem in a separate NAND block, the SSD cgnyethe extended lifespan with small garbage ctithec
overhead.

Acknowledgement

This work was supported by a 2-Year Research Gfatisan National University.

Refer ences

[1] M. Hao, G. Soundararajan, D. Kenchammana-Hoselatdy. Chien, and H. S. Gunawi, “The tail at stoee:
revelation from millions of hours of disk and SSBptbyments,”in Proc. 14th USENIX Conference on File and
Storage Technologies (FAST ‘18p. 263-276, Feb. 22-25, 2016.

DOI: https://dl.acm.org/doi/10.5555/2930583.2930603

[2] F. Chen, T. Luo, and X. Zhang, “CAFTL : A ContenivAre Flash Translation Layer Enhancing the Lifespfan
Flash Memory based Solid State Drivanr,Proc. 9th USENIX Conference on File and Stordgehnologies (FAST
‘11), Feb. 15-17, 2011.

DOI: https://dl.acm.org/doi/10.5555/1960475.1960481

[3] J. Kim, H. Kim, S. Lee, and Y. Won, “FTL design foRIM command,”in Proc. 5th International Workshop on

Software Support for Portable Storage (IWSSPS 2@i0)7-12, Oct. 28, 2010.

Optimizing Garbage Collection Overhead of Host-level Flash Trandlation Layer for Journaling Filesystems 35

[4] J. Kang, J. Hyun, H. Maeng, and S. Cho, “The Msiiteamed Solid-State Driveyi Proc. 6th USENIX Workshop
on Hot Topics in Storage and File Systems (Hot$®ra4) June 17-18, 2014.

DOI: https://dl.acm.org/doi/abs/10.5555/269657 8 &5l

[51 NVMe overview. https://www.nvmexpress.org/wpconteptoads/NVMe_Overview.pdf.

[6] Open-channel Solid State Drives. https://openchasdeeadthedocs.io/en/latest/.

[7]1 M. Bjgrling, C. Labs, J. Gonzalez, F. March, anc€Cra, “LightNVM: The Linux Open-channel SSD Susgm,”
in Proc. 15th USENIX Conference on File Storagehhetgies (FAST ‘17)pp. 359-374, Feb. 27-March 2, 2017.
DOI: https://dl.acm.org/doi/abs/10.5555/31296 33 66

[8] I. L. Picoli, N. Hedam, P. Bonnet, and P. Tézlunp&d-channel SSD (What is it Good Fotijy"Proc. 10th Annual
Conference on Innovative Data Systems ResearchR@D), Jan. 12-15, 2020.

[9] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, Aras, and L. Vivier, “The New Ext4 Filesystem: Gunt Status
and Future Plansjh Proc. Linux Symposiunvol. 2, pp. 21-33, 2007.

[10] S. Kim and E. Lee, “Analysis and Improvement of F@rformance Degradation by Journaling in a Viiaeal
Environment, The Journal of the Institute of Internet, Broaddagtand Communication(JIIBCYol. 16, No. 6, pp.
177-181, Dec. 2016.

[11] P. O'Nelil, E. Cheng, D. Gawlick, and E O'Neil, “Tlg-structured merge-tree (LSM-treeXcta Informatica Vol.
33, No. 4, pp. 351-385, June 1996.

DOI: https://doi.org/10.1007/s002360050048

[12] LevelDB. https://github.com/google/leveldb.

[13] RocksDB. https://github.com/facebook/rocksdb.

[14] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, @nghand J. Cong. “An efficient design and impletagon of
LSM-tree based key-value store on open-channel 'SBCRroc. of the 9th European Conference on Computer
Systems (EuroSys ‘14)p. 1-14, April 2014.

DOI: https://doi.org/10.1145/2592798.2592804

[15] RocksDB on Open-Channel SSDs. https://javigongles.fvordpress.com/2011/12/rocksdbmeetup.pdf.

[16] J. Huang, A. Badam, L. Caulfield, S. Nath, S. SetguB. Sharma, and M. K. Qureshi “Flashblox: Aeirig both
performance isolation and uniform lifetime for valized ssds,in Proc. 15th USENIX Conference on File and
Storage Technologies (FAST ‘1pp. 375-390, Feb. 27-March 2, 2017.

DOI: https://dl.acm.org/doi/10.5555/3129633.3129667

[17] QEMU Open-channel SSD 2.0. https://github.com/OpgemelSSD/gemu-nvme.

[18] Fio - Flexible 1/0O tester rev. 3.23. https://fiadthedocs.io/en/latest/fio_doc.html.

[19] V. Tarasov, E. Zadok, and S. Shepler, “FilebenchFlaxible Framework for File System Benchmarking,”
USENIX ;login Vol. 41, No. 1, pp. 6-12, April 2016.

