
International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

http://dx.doi.org/10.7236/IJIBC.2021.13.2.27

Optimizing Garbage Collection Overhead of Host-level Flash Translation Layer
for Journaling Filesystems

Sehee Son1 and Sungyong Ahn2

1Master Student, School of Computer Science and Engineering, Pusan National University, Korea
2Assistant Professor, School of Computer Science and Engineering, Pusan National University,

Korea
1ight13751@pusan.ac.kr, 2sungyong.ahn@pusan.ac.kr

Abstract

NAND flash memory-based SSD needs an internal software, Flash Translation Layer(FTL) to provide
traditional block device interface to the host because of its physical constraints, such as erase-before-write
and large erase block. However, because useful host-side information cannot be delivered to FTL through the
narrow block device interface, SSDs suffer from a variety of problems such as increasing garbage collection
overhead, large tail-latency, and unpredictable I/O latency. Otherwise, the new type of SSD, open-channel
SSD exposes the internal structure of SSD to the host so that underlying NAND flash memory can be managed
directly by the host-level FTL. Especially, I/O data classification by using host-side information can achieve
the reduction of garbage collection overhead. In this paper, we propose a new scheme to reduce garbage
collection overhead of open-channel SSD by separating the journal from other file data for the journaling
filesystem. Because journal has different lifespan with other file data, the Write Amplification Factor (WAF)
caused by garbage collection can be reduced. The proposed scheme is implemented by modifying the host-
level FTL of Linux and evaluated with both Fio and Filebench. According to the experiment results, the
proposed scheme improves I/O performance by 46%~50% while reducing the WAF of open-channel SSDs by
more than 33% compared to the previous one.

Keywords: Solid-State Disk, Flash Translation Layer, Open-channel SSD, Journaling Filesystem, EXT4 Filesystem

1. Introduction

Today, in the storage device market, the NAND flash memory-based Solid-State Disk (SSD) is rapidly
displacing the traditional storage, Hard Disk Drive (HDD) because of its various advantages such as low
latency, high density, low power consumption and shock resistance. On the other hand, because NAND flash
memory cannot overwrite data in-place, SSD needs internal software called Flash Translation Layer (FTL) to
provide block device interface to host. The FTL updates the data with an out-place update fashion where
obsolete data is invalidated and new data is written to other location. The invalidated data is periodically

IJIBC 21-2-5

Manuscript Received: January. 27, 2021 / Revised: February. 3, 2021 / Accepted: February. 7, 2021
Corresponding Author: sungyong.ahn@pusan.ac.kr
Tel: +82-51-510-2422, Fax: +82-51-517-2431
Assistant Professor, School of Computer Science and Engineering, Pusan National University, Korea

28 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

deleted by garbage collection, another major feature of FTL, to reserves free space. However, because the
erase unit of NAND flash memory (NAND block) is much larger than write unit, the valid pages in a victim
block must be copied to another location before deleting the NAND block. In other words, garbage collection
of FTL causes additional writes, which causes performance degradation and shortened lifespan of the SSD.

Moreover, garbage collection overhead increases when short-lived and long-lived data are mixed in same
NAND block. However, because host-side information which is useful for data classification is lost due to the
narrow block device interface, SSDs suffer from a variety of problems such as garbage collection overhead,
large tail-latency, and unpredictable I/O latency[1, 2].

Therefore, many studies have been conducted to overcome the limitations of the legacy block interface and
deliver useful host-side information to the FTL inside the SSD. The TRIM[3] command which is one of the
earliest studies to overcome the limitations of the legacy block interface has already been standardized and is
supported successfully in most operating systems and SSDs. It is a newly proposed command which helps to
perform garbage collection more effectively by notifying the SSD that certain data has been deleted by the
host. Another notable study is the multi-stream SSD[4] which reduces garbage collection overhead by
allocating I/O streams with different write patterns to a separate NAND flash area by transferring I/O stream
information to the SSD. The multi-stream technique is also included in the latest NVM Express (NVMe) [5]
standard. However, the existing studies have a limitation in that they can still provide very limited information.
Therefore, the host-level FTL which directly manages the NAND flash memory of a SSD attracts attention
because it can utilize host side information.

Open-channel SSD[6] is a new type of SSD that can fundamentally overcome the limitations of SSDs
employing an internal FTL by revealing the internal structure of the SSD to the host. In open-channel SSD,
the host directly performs FTL features such as data placement and garbage collection, so that the performance
of SSDs can be optimized through utilizing host-side information such as I/O data classification using file
system information and performance isolation through workload classification. However, existing the I/O stack
of the operating system has not yet utilized the host-side information. Therefore, in this paper, we propose a
new scheme to reduce garbage collection overhead of open-channel SSD by separating the journal from other
file data for the journaling file system. The proposed scheme is implemented by modifying the host-level FTL
of Linux and evaluated with Fio and Filebench. According to the experiment results, the proposed scheme
improves I/O performance by 46%~50% while decreasing garbage collection overhead of SSD,WAF by more
than 33% in comparison to the previous one.

The remainder of this paper is organized as follows. Section 2 introduces the open-channel SSD and
journaling system of Ext4 filesystem. Then, Section 3 briefly shows the previous studies related to open-
channel SSDs. Section 4 describes the design and implementation of proposed scheme. Experimental results
are presented in Section 5. The conclusion is given in Section 6.

2. Background

2.1 Open-channel SSD
Open-channel SSD is proposed as a new class of SSDs to overcome shortcomings of conventional block

device interface SSDs [6]. As shown in Figure 1(a), in the case of a conventional SSDs, FTL is implemented
in the form of firmware inside the SSD, so that it can support a block device interface to the host. As a result,
the host can deliver I/O requests with logical address as if SSDs can update data in-place. On the other hand,
as shown in Figure 1(b), the open-channel SSD exposes the internal structure of the SSD to the host, so that
the host can directly manage underlying NAND flash memory for open-channel SSDs.

Optimizing Garbage Collection Overhead of Host-level Flash Translation Layer for Journaling Filesystems 29

The LightNVM[7], Linux subsystem, has been provided to support open-channel SSD since kernel 4.4.
The LightNVM has host-level FTL called Pblk (i.e., Physical Block Device) which provides a block device
interface to user programs, while internally performing data placement and garbage collection for underlying
NAND flash memory. As a result, open-channel SSDs can take the following advantages [8].

 I/O Isolation: Since the host knows the internal structure of the SSD, it is able to allocate physically separated
NAND flash memory region for each application program. As a result, I/O performance interference between
different applications can be minimized.

 Predictable latency: In the conventional SSDs, long-tail latency is mainly caused by SSD internal operations
such as garbage collection and wear-leveling. However, in the open-channel SSD, because the host can check
the status of the internal operations, the completion time of I/O requests can be predicted. Moreover, if
necessary, it is possible to delay garbage collection to achieve the desired I/O completion time.

 Software-Defined Non-Volatile Memory: Host-level FTL can be optimized for specified application by
integrating FTL functions into the application.

2.2 Ext4 Journaling Filesystem
Ext4 filesystem [9, 10], the default filesystem of Linux, employs a journaling system to maintain the

consistency and stability of the filesystem. In journaling systems, when a write operation is requested, the
information about the write operation (called as journal) should be recorded in a separated journal region of
storage before writing the actual file data into the storage device. Therefore, even if a system failure occurs
during processing the write operation and causes the inconsistency of the filesystem, the filesystem can be
quickly restored by using the journal written in the journal region.

In the Linux, the Journaling Block Device2 (JBD2) daemon performs journaling for Ext4 filesystem
periodically or by the fsync() system call. JBD2 performs journaling in three steps: At first, the journal for file
write operation is recorded in the journal region separated from the file data region of the filesystem. Second
step is Commit indicating that the journal is successfully recorded. After Commit, the file data is finally written
in the file data area of the storage device in Checkpoint step. Note that the journal record can be deleted after
file data writing is completed.

As mentioned above, a journal of Ext4 filesystem is deleted in most cases after the corresponding file data
is completely written to file data region of the storage. However, since the SSD performs an out-place update,

(a) (b)

Figure 1. (a) Conventional block interface SSD vs. (b) Open-channel SSD[7]

NAND Flash Memory

Block Interface SSD

Data Placement I/O Scheduling Wear-leveling

Chunk
Management

Media Error
Management

Media Controller

Logical Address (Read/Write)

NAND Channels (Read/Write/Erase)

FTL

Block I/O Layer

Host

NAND Flash Memory

Host

Open-Channel SSD

Chunk
Management

Media Error
Management

Media Controller

Physical Address
(Read/Write/Erase)

(Read/Write/Erase)NAND Channels

Host-based FTL

Data Placement I/O Scheduling Wear-leveling

30 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

the deleted journal is not actually deleted from the NAND flash memory but remains as an invalid page that
will be deleted during the next garbage collection. As shown in Figure 2, if the NAND pages including general
file data (Data page) and the NAND pages including journal (Journal page) are recorded together in same
NAND block, the number of valid pages copied during garbage collection may increase.

The reason is that file data and journal have different lifespan. However, in the existing block interface
SSDs, information other than the logical address cannot be transferred from the host to the SSDs, so FTL
firmware cannot distinguish file data and journal. Therefore, in this paper, we propose a scheme which
separates journal from file data in journaling filesystem to reduce garbage collection overhead of open-channel
SSDs.

3. Related Work

There have been several studies on optimizing I/O stack by using open-channel SSDs. The one of the
earliest studies is optimizing Key-Value(KV) store to the open-channel SSDs. The KV stores based on Log-
Structured Merge Trees (LSM-tree)[11] such as LevelDB[12] and RocksDB[13] is attracting attention because
of its good read speed and sequential write property that is suitable for SSD. However, LSM-tree should
periodically merge key-value pairs which have same keys. This operation, called compaction, is the main
reason of deterioration of the LSM-tree performance as it generates many read/write operations.

In the previous study, it is proposed to classify the files constituting the LSM-tree according to their
characteristics and allocate them to a separate NAND flash memory region. The proposed method can increase
the throughput of KV store by more than four times while reducing garbage collection overhead[14]. Also,
RocksDB have been optimized for open-channel SSDs by integrating garbage collection of FTL to the
compaction process of LSM-tree[15]. In the past, the compaction process and garbage collection were
performed separately because the KV store could not know the internal structure of the SSD. However,
previous studies show that the garbage collection overhead of open-channel SSD can be reduced by integrating
both operations.

Another studies are about the performance isolation technique by using open-channel SSDs in the multi-
tenant environment. In a cloud environment, several tenants sharing SSDs are suffered from severe I/O

Figure 2. Garbage collection overhead without journal separation

J4

J5

J3

D1

D2

D3

D4

D5

Jo
ur

na
l r

eg
io

n

F
ile

 D
at

a
re

gi
on

J1

J2

J3

D1

D2

D3

F
la

sh
 T

ra
ns

la
ti

on
 L

ay
er

Logical
Address Space

J1

D1

D2

J2

D3

J3

Free

Free

Free

Free

JFree 3

Free

Block Interface SSD

F
la

sh
 T

ra
ns

la
ti

on
 L

ay
er

Logical
Address Space

D1

D2

D3

J3

J4

D4

J5

D5

J Free 3

Free

Block Interface SSD

write (D4, D5)
journal (J4, J5)

Free Data Journal invalid

J1

J2

High GC
Overhead

Jo
ur

na
l r

eg
io

n

F
ile

 D
at

a
re

gi
on

Physical
Address Space

Physical
Address Space

Host Host

NAND page:

Optimizing Garbage Collection Overhead of Host-level Flash Translation Layer for Journaling Filesystems 31

performance interference and large tail-latency. Therefore, it is proposed to allocate an independent channel
or die to each tenant using an open-channel SSD to make the most of the internal parallelism of the SSD while
minimizing the performance interference between tenants[16]. According to the evaluation results, proposed
storage system increase throughput by up to 1.6 times and provides 3.1 times lower tail latency compared to
legacy SSDs.

4. Design and Implementation

4.1 Design Overview
As mentioned in Section 2, journal has different lifespan from file data in the journaling filesystem such as

Ext4. Therefore, it is better to write he journal pages and data pages in separate NAND blocks to reduce
garbage collection overhead. However, the FTL firmware of conventional block interface SSD cannot
distinguish journal from file data because it has no information about the filesystem. However, in the case of
open-channel SSDs, the host-level FTL can achieve the useful information from filesystems. So, in this section,
we propose host-level FTL that separates journal from file data to reduce garbage collection overhead by
utilizing the information delivered from filesystem.

Figure 3 shows the basic idea and effectiveness of proposed scheme. As you can see in the figure, the
proposed scheme writes journal pages to a separate NAND block(Journal Block).

Therefore, Journal block are highly likely to be erased without valid page copy during garbage collection
because journal is sequentially deleted after Checkpoint step of journaling. As a result, the Write Amplification
Factor (WAF) which directly affects the lifespan of the SSDs can be reduced by using proposed scheme. Note
that WAF represents the ratio of the amount of additional writes generated by garbage collection, and the larger
this value, the higher the overhead of garbage collection and the shorter the lifespan of the SSD.

4.2 Implementation
In this section, we describe the operation of host-level FTL supporting Ext4 journal separation for open-

channel SSDs as can be seen in Figure 4. The proposed scheme is implemented by using following two features.
First, a method is needed to deliver the information that can distinguish journal from file data to host-level

Figure 3. Garbage collection overhead with separating journal on open-channel SSDs

J1

J2

J3

D1

D2

D3

H
os

t-
le

ve
l F

la
sh

 T
ra

ns
la

ti
on

 L
ay

er

Logical
Address Space

J1

J1

J2

Free

Free

Free

Free

D1

D2

D3

Free

Open-channel SSD

Free Data Journal invalid

Jo
ur

na
l r

eg
io

n

F
ile

 D
at

a
re

gi
on

Journal Blocks

J3

Free

Free

Free

File Data Blocks

J4

J5

J3

D1

D2

D3

H
os

t-
le

ve
l F

la
sh

 T
ra

ns
la

ti
on

 L
ay

er

Logical
Address Space

J1

D5

Free

Free

Free

D1

D2

D3

D4

Open-channel SSD

Jo
ur

na
l r

eg
io

n

F
ile

 D
at

a
re

gi
on

Journal Blocks

J3

J4

J5

Free

File Data Blocks

J2

J1

write (D4, D5)
journal (J4, J5)

No GC
OverheadHost Host

Physical
Address Space

Physical
Address Space

NAND page:

32 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

FTL from filesystem. Second, we need a way to manage journals separate from file data in host level FTL.
At first, to deliver journal identification information to the host-level FTL, we employ a new flag indicating

journal in the struct bio. Here, struct bio is Linux kernel structure describing block I/O request. The journal
flag is set to inform that the write request is for journal when the journal is committed by JBD2. As a result,
the host-level FTL can allocates a struct bio of which journal flag is set to the journal block.

Second, the proposed scheme uses two circular buffers to handle journal writes and file data writes
separately. Write requests are first written to the write buffer inside host-level FTL. When the free space in the
buffer is exhausted, they are requested to the SSD at once by host-level FTL. At this time, if journal and file
data are mixed in same buffer, it is difficult to write them separately. Therefore, we employ two separate write
buffers for journal and file data, respectively. Although additional memory space should be consumed, it is
negligible compared to system memory size.

5. Experimental Results

5.1 Experimental Environments
The proposed scheme is implemented in Pblk, host-level FTL of Linux, and Ext4 filesystem of Linux kernel

4.16 and evaluated on Ubuntu 18.04 emulated on QEMU virtual machine. The detailed experimental
environments are described in Table 1. As can be seen in the table, open-channel SSD is emulated on the

Figure 4. Design for journal separating host-level FTL

Table 1. Experimental environments

 Component Specification

Host Hardware

CPU Intel Xeon CPU E5-2620 v4 @ 2.10GHz x 2

Memory 64GB DDR4

SSD Intel DC P4610 1.6TB NVMe SSD

QEMU virtual machine

CPU 8 cores

Memory 4GB

Operating system Ubuntu 18.04

Virtual OCSSD

of Group 2

of PU per Group 4

of Chunk per PU 60

of Sectors per Chunk 4096

Sector Size 4KB

Total Capacity 7.5GB

yes
is journal?

Ext4 Journaling Filesystem

no

Journal write buffer File Data write buffer

Pblk (Host-level FTL)

bio

J1

J1

J2

Journal Blocks

J3

Free

Free

Free

D1

D2

D3

D4

File Data Blocks

D5

Free

Free

Free

Open-channel SSD

Optimizing Garbage Collection Overhead of Host-level Flash Translation Layer for Journaling Filesystems 33

backend storage device, Intel DC P4610 NVMe SSD by using Virtual Open-channel SSD[17] because real
open-channel SSD devices are not officially released yet. Moreover, Fio[18] and Filebench[19] are used for
performance evaluation with the configuration described in Table 2.

Table 1. Workload characteristics

Benchmark Parameters Values

Fio

 I/O size (rand/seq) 4KB / 1MB

 I/O depth 32

 Total I/O size 2GB

Filebench

Fileserver Mean file size 128KB

 I/O size 1MB

 Mean append size 16KB

Webserver Mean file size 16KB

 I/O size 1MB

 Mean append size 16KB

MongoDB File size 16KB

 Mean I/O size 16KB

 Read I/O size 1MB

 5.2 Evaluation Results
Figure 5(a) shows normalized I/O bandwidth of the proposed journal separation FTL (JS-Pblk) compared

to the original host-level FTL (Pblk) for Fio workload. As you can see the figure, JS-Pblk increases the I/O
bandwidth by 50% for both random and sequential writes. Moreover, Figure 5(b) shows that the performance
improvement of JS-Pblk is due to reduced garbage collection overhead. According to the figure, WAF of JS-
Pblk is only up to 67% compared to previous one. It indicates that the proposed journal separation policy
dramatically decreases the garbage collection overhead of host-level FTL.

Similar results are found in the performance evaluation using Filebench emulating server workloads. Figure
6(a) shows normalized number of operations per second(OPS) for three different Filebench workloads. As you
can see the figure, JS-Pblk delivered up to 40% improved performance. Moreover, in the Figure 6(b), JS-Pblk
shows a WAF close to 1 while Pblk shows WAF above 4.5 at the maximum. increases WAF decreased by up
to 41% and the number of VPC pages decreased from 57% to 100%. In the Filebench performance evaluation
results, it is confirmed that WAF is dramatically reduced for the real-world workloads with JS-Pblk.

(a) Normalized I/O bandwidth (b) Write amplification factor

Figure 5. Garbage collection overhead for Fio workloads

1.50 1.46

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

RandWrite SeqWrite

N
or

m
al

iz
ed

 I/
O

 B
a

nd
w

id
th

Pblk

JS-Pblk

1.525 1.497

1.001 1.001

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

RandWrite SeqWrite

W
ri

te
 A

m
p

lif
ic

a
tio

n
F

ac
to

r Pblk

JS-Pblk

34 International Journal of Internet, Broadcasting and Communication Vol.13 No.2 27-35 (2021)

6. Conclusion

Unlike conventional block interface SSDs, the open channel SSD is a new type of SSD that exposes the
internal structure of the SSD to the host and allows the host directly to manage underlying the NAND flash
memory. Therefore, host-level FTL of open-channel SSD can utilize host-side information to optimize the
performance of SSDs. By classifying hot and cold data using host information, data placement in NAND flash
memory can be optimized to reduce garbage collection overhead. In this paper, we have proposed a scheme to
reduce the garbage collection overhead of open-channel SSD by separating the journal of the journaling file
system from the file data. The proposed scheme is implemented by modifying the host-level FTL of Linux for
open-channel SSD and evaluated using an emulated virtual open-channel SSD. According to the evaluation
results, the proposed scheme improves I/O bandwidth by 46%~50% while reducing the WAF of open-channel
SSDs by more than 33% compared to the previous one. The results means that by recording the journal of
filesystem in a separate NAND block, the SSD can enjoy the extended lifespan with small garbage collection
overhead.

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

[1] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. A. Chien, and H. S. Gunawi, “The tail at store: a

revelation from millions of hours of disk and SSD deployments,” in Proc. 14th USENIX Conference on File and
Storage Technologies (FAST ‘16), pp. 263–276, Feb. 22-25, 2016.
DOI: https://dl.acm.org/doi/10.5555/2930583.2930603

[2] F. Chen, T. Luo, and X. Zhang, “CAFTL : A Content-Aware Flash Translation Layer Enhancing the Lifespan of
Flash Memory based Solid State Drives,” in Proc. 9th USENIX Conference on File and Storage Technologies (FAST
‘11), Feb. 15-17, 2011.
DOI: https://dl.acm.org/doi/10.5555/1960475.1960481

[3] J. Kim, H. Kim, S. Lee, and Y. Won, “FTL design for TRIM command,” in Proc. 5th International Workshop on
Software Support for Portable Storage (IWSSPS 2010), pp. 7-12, Oct. 28, 2010.

(a) Normalized OPS (b) Write amplification factor

Figure 6. Garbage collection overhead for Filebench workloads

1.00 1.00 1.00

1.24
1.36 1.40

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Fileserver Webserver Mongo

N
or

m
al

iz
e

d
O

p
er

a
tio

n
pe

r
S

ec
.

Pblk

JS-Pblk

1.333

4.555

1.957

1.001 1.030 1.001

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

Fileserver Webserver Mongo

W
rit

e
 A

m
pl

ifi
ca

tio
n

 F
a

ct
or

Pblk

JS-Pblk

Optimizing Garbage Collection Overhead of Host-level Flash Translation Layer for Journaling Filesystems 35

[4] J. Kang, J. Hyun, H. Maeng, and S. Cho, “The Multi-streamed Solid-State Drive,” in Proc. 6th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage ‘14), June 17-18, 2014.
DOI: https://dl.acm.org/doi/abs/10.5555/2696578.2696591

[5] NVMe overview. https://www.nvmexpress.org/wpcontent/uploads/NVMe_Overview.pdf.
[6] Open-channel Solid State Drives. https://openchannelssd.readthedocs.io/en/latest/.
[7] M. Bjørling, C. Labs, J. Gonzalez, F. March, and S. Clara, “LightNVM: The Linux Open-channel SSD Subsystem,”

in Proc. 15th USENIX Conference on File Storage Technologies (FAST ‘17), pp. 359–374, Feb. 27-March 2, 2017.
DOI: https://dl.acm.org/doi/abs/10.5555/3129633.3129666

[8] I. L. Picoli, N. Hedam, P. Bonnet, and P. Tözün, “Open-channel SSD (What is it Good For),” in Proc. 10th Annual
Conference on Innovative Data Systems Research (CIDR ‘20), Jan. 12-15, 2020.

[9] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier, “The New Ext4 Filesystem: Current Status
and Future Plans,” in Proc. Linux Symposium, Vol. 2, pp. 21-33, 2007.

[10] S. Kim and E. Lee, “Analysis and Improvement of I/O Performance Degradation by Journaling in a Virtualized
Environment,” The Journal of the Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 16, No. 6, pp.
177-181, Dec. 2016.

[11] P. O’Neil, E. Cheng, D. Gawlick, and E O'Neil, “The log-structured merge-tree (LSM-tree)”, Acta Informatica, Vol.
33, No. 4, pp. 351-385, June 1996.
DOI: https://doi.org/10.1007/s002360050048

[12] LevelDB. https://github.com/google/leveldb.
[13] RocksDB. https://github.com/facebook/rocksdb.
[14] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong. “An efficient design and implementation of

LSM-tree based key-value store on open-channel SSD,” in Proc. of the 9th European Conference on Computer
Systems (EuroSys ‘14), pp. 1-14, April 2014.
DOI: https://doi.org/10.1145/2592798.2592804

[15] RocksDB on Open-Channel SSDs. https://javigongon.files.wordpress.com/2011/12/rocksdbmeetup.pdf.
[16] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma, and M. K. Qureshi “Flashblox: Achieving both

performance isolation and uniform lifetime for virtualized ssds,” in Proc. 15th USENIX Conference on File and
Storage Technologies (FAST ‘17), pp. 375-390, Feb. 27-March 2, 2017.
DOI: https://dl.acm.org/doi/10.5555/3129633.3129667

[17] QEMU Open-channel SSD 2.0. https://github.com/OpenChannelSSD/qemu-nvme.
[18] Fio - Flexible I/O tester rev. 3.23. https://fio.readthedocs.io/en/latest/fio_doc.html.
[19] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A Flexible Framework for File System Benchmarking,”

USENIX ;login, Vol. 41, No. 1, pp. 6–12, April 2016.

