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Recently, NAND flash memory has emerged as a next 
generation storage device because it has several 
advantages, such as low power consumption, shock 
resistance, and so on. However, it is necessary to use a 
flash translation layer (FTL) to intermediate between 
NAND flash memory and conventional file systems 
because of the unique hardware characteristics of flash 
memory. This paper proposes a new clustered FTL 
(CFTL) that uses clustered hash tables and a two-level 
software cache technique. The CFTL can anticipate 
consecutive addresses from the host because the clustered 
hash table uses the locality of reference in a large address 
space. It also adaptively switches logical addresses to 
physical addresses in the flash memory by using block 
mapping, page mapping, and a two-level software cache 
technique. Furthermore, anticipatory I/O management 
using continuity counters and a prefetch scheme enables 
fast address translation. Experimental results show that 
the proposed address translation mechanism for CFTL 
provides better performance in address translation and 
memory space usage than the well-known NAND FTL 
(NFTL) and adaptive FTL (AFTL). 
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I. Introduction 

Recently, mass NAND flash memory has emerged as a 
storage media alternative to the magnetic disk. Flash memory 
has several advantages such as faster access speed, lower 
power consumption, and better shock resistance than the 
traditional hard disk. Accordingly, it has been adopted in 
embedded applications, mobile consumer electronics, and 
various types of memories [1], [2]. 

As shown in Fig. 1, the basic architecture of the mobile 
storage for consumer electronics consists of flash memory 
chips, a dedicated controller, and a static random access 
memory (SRAM) for data I/O management. Therefore, the 
data structure and algorithm for the flash memory affects the 
performance of the mobile storage [3]. 

The flash memory contains several blocks, and each block 
consists of a fixed number of pages. A page comprises the user 
data area and the spare area. The user data area stores contents, 
and the spare area stores error correction codes and extra 
information, such as the logical block number used in the 
operating system and the block status information. 

Usually, there are two types of blocks: a large block 
 

 

Fig. 1. Basic architecture of the mobile storage. 
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Table 1. Times and units of operations in NAND flash memory. 

Operation Unit size Time 

512 B (random/sequential) 15 µs / 42 ns 
Read 

2 kB (random/sequential) 25 µs / 25 ns 

Write 512 B / 2 kB 200 µs 

16 kB 2 ms 
Erase 

128 kB 1.5 ms 

 
(128 kB) composed of 64 large pages (2 kB), and a small block 
(16 kB) composed of 32 small pages (512 B). Initially, the 
manufacturers supported a small block scheme, but as the 
capacity of flash memory increases, it needs to handle a large 
number of pages. However, it is hard to control a large number 
of pages because NAND flash memory contains an 8- or 16-bit 
microcontroller; therefore, the manufacturers now support a 
large block scheme as an alternative. 

The read and write operations are performed in the unit of a 
page, whereas the erase operation is performed in the unit of a 
block. As shown in Table 1, the operations have various 
activity times [4], [5]. Because the unit of the read/write 
operations differs from that of the erase operation, flash 
memory incurs much overhead to update in place so that data 
is written to free space, and old versions of data become invalid. 
Furthermore, because the read operation in sequential access is 
faster than the read operation in random access, the spatial 
locality affects I/O performance. 

The flash translation layer (FTL), a type of middleware, has 
been employed to connect the file system and the structure of 
NAND flash memory since the flash memory and a hard disk 
have different hardware characteristics. Specifically, NAND 
flash memory has a limited block life cycle of 100,000 times 
for the single-level-cell type and that of 10,000 times for the 
multi-level-cell type, respectively. Thus, FTL performs out-
place update due to the characteristics of flash memory. 

As the capacity of NAND flash memory continues to rapidly 
increase, the address translation mechanism of the FTL is 
becoming a critical design issue in terms of performance 
improvement and memory space requirement. 

The adaptive FTL (AFTL), a well known flash memory 
management mechanism, combines two different granularities 
in address translation to exploit the advantages of page 
mapping and block mapping and enhances the address 
translation performance [6]. 

The AFTL uses hash tables for address translation. However, 
its fixed memory space overhead becomes 75% since it uses 
double pointers for each bucket. For example, the AFTL uses 
an additional 4 B single pointer for 8 B data in a coarse-grained 

hash table. In a fine-grained hash table, a slot uses additional  
8 B double pointers for 12 B data. Furthermore, the 
improvement ratio of the AFTL address translation time is 
insignificant even when the size of the fine-grained hash table 
becomes large. 

To resolve this problem, we propose a clustered FTL 
(CFTL), which uses clustered hash tables as a data structure 
for the address translation and a two-level software cache 
technique. The proposed CFTL enhances the address 
translation performance by combining block mapping (a 
coarse-grained clustered hash table) and page mapping (two-
level fine-grained clustered hash tables) and reducing 
memory space utilization. In addition, anticipatory I/O 
management using a continuity counter and a prefetch 
mechanism enhances the performance of consecutive address 
translation. 

This paper is organized as follows. Section II describes the 
related works on other FTL algorithms. Section III describes 
the address translation mechanism for CFTL, and section IV 
presents experimental results. Finally, section V concludes the 
paper. 

II. Related Works 

1. Early Flash Translation Layer 

The early FTL adopted a page-level address translation 
mechanism [7]. The early FTL represents a typical fine-grained 
FTL design.  

Basically, the address translation table in an FTL is held in 
the random access memory (RAM) while the system is 
powered and the relationship between the logical block 
number used in the operating system and the physical block 
number of individual block or page is backed up in the spare 
area of the flash memory. The relationships are used to 
translate the logical block address (LBA) into the physical 
block address (PBA). 

For example, as shown in Fig. 2, if we assume that a block 
consists of 8 pages, the LBA 8 is mapped to the PBA (8, 2) by 
the translation table. Its translation speed is fast because the 
address translation information is stored by page unit. However, 
the translation table becomes large because the address 
translation is performed by the unit of a page. When the size of 
the flash memory is 512 MB with a page size of 512 B, it 
requires 1,048,576 (512×1024×1024/512) entries of the 
address translation table to store the address translation 
information. When the size of an address information slot is   
4 B, the early FTL requires 4 MB RAM space to convert from 
the LBAs to the PBAs. Moreover, it incurs a fixed overhead of 
128 B per block 16 kB. 
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Fig. 2. Early flash translation layer. 
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2. NAND Flash Translation Layer 

The NAND FTL (NFTL) designed by M-Systems adopts a 
block-level address translation mechanism. NFTL represents a 
typical coarse-grained flash translation layer design [8]-[11]. In 
NFTL, an LBA is divided into a virtual block address (VBA) 
and a block offset, where the VBA is the quotient when the 
LBA is divided by the number of pages in a block, and the 
block offset is the remainder. Each VBA is translated into a 
primary block and a replacement block, and the block offset is 
the order of the primary block. 

When a write request is issued, data is written to the page 
corresponding to the block offset in the primary block. Because 
the subsequent write requests cannot overwrite the same pages 
in the primary block, a replacement block is needed to handle 
subsequent write requests, and the contents of the repeated 
write requests are sequentially written to the replacement block. 

For example, as shown in Fig. 3, if we assume that a block 
consists of 8 pages and the LBA is 1,284, the LBA is divided 
into 8, and the VBA and the block offset become 160 and 3, 
respectively. Therefore, the corresponding primary PBA 
(PPBA) and the replacement PBA (RPBA) are 100 and 588, 
respectively. On the other hand, if the data is overwritten 
several times (as data A or B in the figure), it will be updated in 
the corresponding replacement block. 

In NFTL, the translation table becomes small because the 
address translation is performed by the unit of a block. When 
the size of the flash memory is 512 MB with a page size of  
512 B, it requires 32,768 (512×1024/16) entries of the address 
translation table to store the address translation information. 
When the size of an address information slot is 4 B, the NFTL 
requires 128 kB RAM space to convert from the LBAs to the 
PBAs. 

 

Fig. 3. NAND flash translation layer. 
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3. Adaptive Flash Translation Layer 

The AFTL adopts a hybrid address translation mechanism 
that combines page-level address translation with block-level 
address translation.  

With respect to a request for address translation, if AFTL 
finds a matching LBA in a fine-grained hash table, the 
matching address is translated by the table using a page-level 
address translation mechanism. Otherwise, the address is 
translated by a coarse-grained hash table using a block-level 
address translation mechanism. 

The AFTL provides a switching policy to switch the most 
recently used mapping information to the fine-grained address 
translation table and, at the same time, switch the least recently 
used mapping information to the coarse-grained address 
translation table because of the limited resource of the fine- 
 

 

Fig. 4. Adaptive flash translation layer. 
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grained address translation table [6]. 
For example, as shown in Fig. 4, if the VBA “A” referenced 

in the RPBA is translated into PBA, the AFTL looks up a fine-
grained hash table. If the VBA is found, the corresponding 
RPBA and offset are returned. Otherwise, the AFTL searches 
the coarse-grained hash table again.  

Unlike NFTL, when the VBA exists in a fine-grained hash 
table, AFTL is able to translate without linearly searching for 
the RPBA since a fine-grained hash table stores the RPBA and 
offset, which enables page-level address translation. 

III. Address Translation Mechanism for CFTL 

1. Overview 

CFTL consists of three clustered hash tables as shown in   
Fig. 5. First, two fine-grained clustered hash tables are designed 
as a two-level software cache. A short fine-grained clustered hash 
table stores the small number of slots with the most frequently 
referenced addresses, and a long fine-grained clustered hash table 
stores the large number of slots with frequently referenced 
addresses. Second, a coarse-grained clustered hash table has hit 
count and continuity counter fields as well as address 
information. The hit count field is used to select the frequently 
referenced slots, and the continuity counter field is used to 
distinguish whether addresses are consecutive or not. 

There are several advantages of the address translation 
mechanism for CFTL. First, the structure of a clustered hash 
table which is adopted from the structure of a linear table and a 
hash table incurs less memory overhead than the traditional 
hash table. Also, it can preserve the locality of reference with  

 

respect to subblocks in a bucket because it groups subblocks 
with adjacent addresses into the same bucket. Second, the use of 
two-level fine-grained clustered hash tables adopted from a 
software cache technique reduces the miss penalty and decreases 
the access frequency of the coarse-grained clustered hash table, 
which entails relatively large address translation overhead. Third, 
the overhead of the address translation is reduced by using a 
continuity counter in the coarse-grained clustered hash table 
when a request for address translation with respect to consecutive 
VBAs occurs. Fourth, the anticipatory I/O management using a 
prefetch scheme enhances the performance of the address 
translation because it prefetches whole pages referenced in the 
bucket including the subblock matched with the requested LBA 
if the requested LBA corresponds with one of the subblocks in 
the fine-grained clustered hash tables. 

When the system is powered up, the procedure of building the 
address translation table is as follows. Generally, LBAs are 
stored in the spare areas of pages. For that reason, CFTL reads all 
of the spare areas of the flash memory to fill the address 
translation table. The loaded logical addresses are inserted into 
corresponding slots in the coarse-grained clustered hash table in 
order. When CFTL has finished the address translation table 
setup, it waits for the I/O requests from the host. If a write request 
is received from the host, the data and the logical block address 
are written to the corresponding physical page and spare area, 
respectively. Subsequently, the corresponding slot of the address 
translation table is updated to the new physical address. 

Figure 5 presents an overview of the address translation 
process in CFTL. When a request for address translation with 
respect to a specific LBA occurs, CFTL first searches the short 
fine-grained clustered hash table. If it finds a matching LBA in 
 

 

Fig. 5. Overview of address translation mechanism for CFTL. 
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the table, the address translation is completed and the 
referenced page using the corresponding PBA and offset is 
transferred to the host. 

If search in the short fine-grained clustered hash table fails, it 
searches the long fine-grained clustered hash table. If it finds a 
matching LBA in the table, the address translation is completed, 
and the referenced page using the corresponding PBA and 
offset is transferred to the host. Otherwise, it searches the 
coarse-grained clustered hash table using a block mapping 
mechanism. It translates the LBA into a VBA with offset. It 
hashes the calculated VBA to find the bucket that stores PPBA 
and RPBA. If the corresponding PPBA and offset are valid, the 
data is transferred to the host. If not, CFTL searches the 
corresponding page of the RPBA in order, and then the 
corresponding data is transferred to the host. 

2. Traditional Hashing Problems 

Basically, most FTLs and the address translation scheme in 
virtual memory use hash tables to translate logical addresses 
into physical addresses. However, address translation schemes 
using hash tables have two disadvantages. The first problem is 
loss of locality of reference. The more the number of addresses 
increases according to the capacity of storage, the worse this 
problem becomes because the traditional hash table becomes 
sparse. Generally, the hash table consists of linked lists of buckets, 
and each bucket contains single or multiple pointer fields. The 
sparse hash table with linked-lists has many empty buckets; thus, 
a considerable amount of memory space is allocated in vain. The 
second problem is missing time due to hashing. Generally, the 
hash function makes use of mathematical function. If a hash 
function’s computational complexity is low, its loss time is small 
but many collisions will occur. Otherwise, it can avoid collision 
but its performance will decrease. 

3. Clustered Hash Table 

Since the address translation time of a linear table increases 
proportionally to its size, it is not adaptable for mass flash 
memory. As shown in Fig. 6, the memory usage of a hash table 
increases more rapidly than that of a linear table since it wastes 
memory space by using double-linked lists including the 
previous pointer and the next pointer. 

To resolve this problem, as shown in Fig. 7, we propose a 
clustered hash table as a data structure for address translation in 
the CFTL. This approach was originally used for a virtual 
memory paging method in Solaris 2.5, a commercial operating 
system on UltraSPARC-based computers of Sun Microsystems 
[12]. The clustered hash table is composed of buckets, which are 
sets of subblocks. The number of subblocks in a bucket is the 
subblock factor. The clustered hash table reduces the number of 

pointers to 1/N by including N subblocks in the same bucket. It 
also reduces the average case search time to O(log N) during the 
address translation. Therefore, its memory usage for pointers is 
less than that of the hash table. Furthermore, since consecutive 
and concurrently used data is stored in the same bucket, the 
clustered hash table can preserve the locality of reference with 
respect to a set of address translation requests. 

4. Continuity Counter 

As shown in Fig. 8, the coarse-grained clustered hash table 
includes continuity counters to represent the number of 
continuous blocks. The continuity counter is set to C if the 
number of the continuous PPBA with respect to consecutive 
VBAs is C. This enables address translation without searching 

 

 

Fig. 6. Structure of conventional hash table using doubly-linked 
lists.
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Fig. 7. Structure of clustered hash table. 
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Fig. 8. Example of a bucket in the coarse-grained clustered hash 
table.
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the address translation tables.  

For example, if the VBA is 512, the corresponding PPBA is 
200, the continuity counter is 4, and the incremental value of the 
VBA is less than or equal to 4, then we can obtain the next 
PPBAs without searching the address translation tables. 
Furthermore, in that case, it is not necessary for the coarse-grained 
clustered hash table to have the address information of 
consecutive VBAs. Therefore, this technique reduces the memory 
space requirement of the coarse-grained clustered hash table. 

5. Two-Level Fine-Grained Clustered Hash Tables 

As shown in Fig. 9, two-level fine-grained clustered hash 
tables are implemented using the software cache technique, 
adopting the hardware translation lookaside buffer concept to 
enhance the performance of CFTL. Even though the use of two-
level fine-grained clustered hash tables does not help reduce the 
access time to the fine-grained clustered hash tables due to the 
limitation of the software cache mechanism, it can reduce the 
miss penalty and decrease the access frequency of the coarse-
grained clustered hash table. Therefore, it can reduce the address 
translation time since most of the address translation is 
performed in the fine-grained clustered hash tables.  

For the two-level address translation tables, the data 
migration policy for a coarse-to-fine switch and a fine-to-
coarse switch is needed. In the case of a coarse-to-fine switch, 
for example, if a subblock with a specific LBA in the coarse-
grained clustered hash table is frequently accessed and its hit 
count is increased more than the threshold, the subblock is 
promoted to the long fine-grained clustered hash table and the 
hit count of this subblock is cleared. If the same subblock is 
increasingly accessed and its hit count is again more than the 
threshold, it is again promoted to the short fine-grained 
clustered hash table. Meanwhile, the not recently used (NRU) 
page replacement method is used to demote unused subblocks 
to the coarse-grained clustered hash table. This is called a fine-

to-coarse demotion policy. 

6. Not Recently Used 

NRU is a variation of the least recently used (LRU) 
approximation technique. It has less overhead than 
conventional LRU but provides similar performance [13]. 

NRU uses a system timer and determines unused slots 
periodically by using bit vectors, namely, a reference bit and a 
modify bit. Both the short fine-grained clustered hash table and 
the long fine-grained clustered hash table have NRU bits for 
the slot management. NRU bits are stored in the RAM, and 
they are initialized when the CFTL starts. For a fine-to-coarse 
switch, as shown in Table 2, two status bits are used to 
determine whether a subblock is demoted. For example, if the 
reference bit and modify bit of a subblock with a specific 
address are both zero, it is assumed that the subblock has not 
been used recently. The subblock is moved from the fine-
grained clustered hash table to the coarse-grained clustered 
hash table, and the unused subblock is removed from the fine-
grained clustered hash tables. 

Table 2. Demotion table using NRU policy. 

Reference bit Modify bit Description 

0 0 Best slot to replace, so the slot is demoted

0 1 
The slot will probably be updated again 
soon, so the slot stays in place 

1 0 
The slot will probably be read again 
soon, so the slot stays in place 

1 1 
The slot will frequently be used, so the 
slot stays in place 

 
 

7. Prefetching Whole Pages from a Bucket 

In general, FTL translates address and transfer data 
whenever an address translation request with respect to a 
specific LBA occurs. The prefetching method proposed in this 
paper prefetches whole pages referenced in a bucket, including 
the subblock matched with the requested LBA in the fine-
grained clustered hash table. 

The clustered hash table is a data structure for address 
translation which stores consecutive LBAs and corresponding 
PBAs in the same bucket. Therefore, if a read request of a page 
with a specific LBA occurs and a certain subblock in the fine-
grained clustered hash table is matched with the LBA, physical 
random pages referenced in the subblocks adjacent to the 
matched subblock are prefetched. Even if subblock pages are 
not composed of consecutive physical pages, our proposed 
prefetching scheme enables fast random access on NAND 
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Fig. 10. Read operation (a) in traditional FTLs and (b) for prefetch
pages in CFTL. 
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flash memory. 

Figure 10(a) illustrates the sequence of a read operation in 
the traditional FTL. When a read command is requested from 
the host, the FTL searches the address translation table, reads 
the page, copies it to memory, and transfers it to the host. 
Figure 10(b) illustrates the read operation sequence of 
prefetching pages referenced by subblocks in a specific bucket 
in the clustered hash table. In this case, the CFTL prevents 
repetitive memory loading and repetition of command 
execution into the flash memory every time. Furthermore, the 
read time for the next read request can be reduced since 
multiple pages are prefetched. 

IV. Performance Evaluation 

To evaluate the proposed CFTL design, we compared CFTL 
with NFTL and AFTL in terms of address translation 
performance. For the experimental environment, we 
implemented the FTL schemes in a NAND flash memory 
simulator using the memory technology device open source of 
a LINUX kernel 2.6.17 environment [14]. We used a 512 MB 
NAND flash memory for comparison of the address translation 
time and the memory space requirement. In addition, we used 
256, 512, 1024, 2048, 4096, and 8192 MB NAND flash 
memories for comparison of the block mapping table size.  

To evaluate the memory space requirement, we set the ratio 
of the short fine-grained clustered hash table and the long fine-
grained clustered hash table as 1:4. The number of maximum 
short fine-grained slots (MSFS) was set to 2,500 and the 
number of maximum long fine-grained slots (MLFS) was set 
to 10,000. Therefore, the number of maximum fine-grained 
slots (MFS) which is the sum of MSFS and MLFS was 12,500. 

1. Address Translation Time 

To evaluate the address translation time and the performance 
of the proposed method, we used two different block-level  

Table 3. Block-level trace workloads. 

Name Type Duration Year 

USB USB personal storage 5 days 2008 

Multimedia Mobile phone 5 days 2008 

 

 

Fig. 11. Relative address translation times of FTLs per workload 
(NFTL=100%). 
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trace workloads as shown in Table 3. Each workload is a trace 
of I/O requests, and every entry is described by I/O time, I/O 
type, and real data. The first workload, USB, is a trace from the 
USB memory drive used for personal document files and 
source code files; the FAT32 file system resides on the USB 
memory drive. The second workload, Multimedia, is a trace 
from an external storage of the Motorola MS 700 mobile 
phone used for mobile multimedia files, such as photos, videos, 
e-books, audio files, and dictionary files. The FAT32 file 
system resides on the mobile phone. All workloads reflect real 
activities in daily life that totally fill the flash memory, 
randomly delete files, create files, and so on. 

The test was repeated ten times under identical conditions. 
For this experiment, the subblock factor in the clustered hash 
tables was set to 8 and the threshold for coarse-to-fine and 
long-to-short promotion policies was set to 10. 

As shown in Fig. 11, the address translation mechanism of 
pure CFTL [15] yields better performance and its address 
translation time is roughly 13% less than that of NFTL and 
about 7% less than that of AFTL. 

In addition, in the case of adding anticipatory I/O management 
using continuity counters and the prefetch technique, the address 
translation time of enhanced CFTL is approximately 20% less 
than that of NFTL and about 14% less than that of AFTL. 

2. Memory Space Requirement 

Figure 12 shows the memory space requirements of NFTL,  
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Fig. 12. Relative memory space requirements of NFTL, AFTL,
and CFTL (AFTL=100%). 
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Fig. 13. Size of block mapping table in NFTL, AFTL, and CFTL.
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AFTL, and CFTL with respect to various MFS values when 
the subblock factors of CFTL are 8, 16, 32, and 64, respectively.  

Note that the memory space requirement of NFTL is 
constant with respect to various MFS values because there is 
no page mapping table in NFTL. 

The result can be explained by the following facts. First, the 
size of the long fine-grained clustered hash table radically 
affects the performance in terms of the memory space 
requirement. This is because the long fine-grained clustered 
hash table is relatively larger than the short fine-grained 
clustered hash table and the coarse-grained clustered hash table. 
Second, the memory space requirement of AFTL sharply 
increases as the MFS increases. In contrast, that of CFTL 
gradually increases as the MFS increases, since CFTL reduces 
the memory space overhead by using clustered hash tables. 
Third, the ratio of the memory space requirement in CFTL is 
lower than that of AFTL by a maximum of 67.68%, 71.72%, 
72.40%, and 72.73% when the subblock factors of CFTL are 8,  

Table 4. Comparison of block mapping table size for small block 

Flash memory size (MB) NFTL (kB) AFTL (kB) CFTL_8 (kB)

256  64 192 80 

512  128 384 160 

1,024  256 768 320 

2,048  512 1536 640 

4,096  1,024 3,072 1,280 

8,192  2,048 6,144 2,560 

Table 5. Comparison of block mapping table size for large block. 

Flash memory size (MB) NFTL (kB) AFTL (kB) CFTL_8 (kB)

256  8 24 11 

512 16 48 22 

1,024  32 96 44 

2,048  64 192 88 

4,096  128 384 176 

8,192  256 768 352 

 

16, 32, and 64, respectively. The ratio was calculated based on 
the memory space requirement of AFTL. To evaluate the 
memory space requirements of the block mapping table in 
NFTL, AFTL, and CFTL, we used 256, 512, 1024, 2048, 4096, 
and 8192 MB NAND flash memories.  

Figure 13 shows the size of the block mapping table in 
NFTL, AFTL, and CFTL using various subblock factors. We 
averaged the size of the block mapping tables for 16 kB and 
128 kB block units. The results show that the rate of size 
increase of the block mapping table of CFTL is at most 
72.73% lower than that of AFTL regardless of flash memory 
size, and the size of the block mapping table in CFTL is similar 
to that of NFTL. 

V. Conclusion 

The flash memory will continue to grow in popularity as its 
capacity increases and its cost decreases. Flash memory storage 
systems, such as Solid State Drive (SSD), will take a greater 
share of the market as an alternative mass storage system. 
Therefore, enhancement of the performance of address 
translation is imperative, and a small address translation table is 
similarly important. 

The proposed CFTL is appropriate for a mobile mass storage 
system with NAND flash memory since its performance is 
better than that of traditional FTLs. Specifically, our technique 
reduces memory consumption by up to 72.73% and improves 
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speed by roughly 14% over the AFTL approach. It will be 
possible to adapt CFTL, to SSD or H-HDD if the hardware 
interface problems of respective storage devices are resolved. 
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