
790 Kwanghee Park et al. ETRI Journal, Volume 30, Number 6, December 2008

Recently, NAND flash memory has emerged as a next
generation storage device because it has several
advantages, such as low power consumption, shock
resistance, and so on. However, it is necessary to use a
flash translation layer (FTL) to intermediate between
NAND flash memory and conventional file systems
because of the unique hardware characteristics of flash
memory. This paper proposes a new clustered FTL
(CFTL) that uses clustered hash tables and a two-level
software cache technique. The CFTL can anticipate
consecutive addresses from the host because the clustered
hash table uses the locality of reference in a large address
space. It also adaptively switches logical addresses to
physical addresses in the flash memory by using block
mapping, page mapping, and a two-level software cache
technique. Furthermore, anticipatory I/O management
using continuity counters and a prefetch scheme enables
fast address translation. Experimental results show that
the proposed address translation mechanism for CFTL
provides better performance in address translation and
memory space usage than the well-known NAND FTL
(NFTL) and adaptive FTL (AFTL).

Keywords: FTL, AFTL, clustered hash table, prefetch,
continuity counter.

Manuscript received Mar. 5, 2008; revised Sept. 11, 2008; accepted Oct. 8, 2008.
This work was supported by a Korea Research Foundation Grant funded by the Korean

Government (MEST) (KRF-2007-313-D00632) and the Ministry of Knowledge Economy
(MKE) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource
Training Project for Strategic Technology.

Kwanghee Park (phone: + 82 32 860 7424, email: khpark@iesl.inha.ac.kr), Junsik Yang
(email: juneseek@iesl.inha.ac.kr), Joon-Hyuk Chang (email: changjh@inha.ac.kr), and
Deok-Hwan Kim (phone: + 82 32 860 7424, email: deokhwan@inha.ac.kr) are with the
Department of Electronic Engineering, Inha University, Incheon, Rep. of Korea.

I. Introduction

Recently, mass NAND flash memory has emerged as a
storage media alternative to the magnetic disk. Flash memory
has several advantages such as faster access speed, lower
power consumption, and better shock resistance than the
traditional hard disk. Accordingly, it has been adopted in
embedded applications, mobile consumer electronics, and
various types of memories [1], [2].

As shown in Fig. 1, the basic architecture of the mobile
storage for consumer electronics consists of flash memory
chips, a dedicated controller, and a static random access
memory (SRAM) for data I/O management. Therefore, the
data structure and algorithm for the flash memory affects the
performance of the mobile storage [3].

The flash memory contains several blocks, and each block
consists of a fixed number of pages. A page comprises the user
data area and the spare area. The user data area stores contents,
and the spare area stores error correction codes and extra
information, such as the logical block number used in the
operating system and the block status information.

Usually, there are two types of blocks: a large block

Fig. 1. Basic architecture of the mobile storage.

µcontroller SRAM

Flash memory chips

Data I/O Control

Mobile storage

Host
interface

Anticipatory I/O Management for Clustered
Flash Translation Layer in NAND Flash Memory

 Kwanghee Park, Junsik Yang, Joon-Hyuk Chang, and Deok-Hwan Kim

ETRI Journal, Volume 30, Number 6, December 2008 Kwanghee Park et al. 791

Table 1. Times and units of operations in NAND flash memory.

Operation Unit size Time

512 B (random/sequential) 15 µs / 42 ns
Read

2 kB (random/sequential) 25 µs / 25 ns

Write 512 B / 2 kB 200 µs

16 kB 2 ms
Erase

128 kB 1.5 ms

(128 kB) composed of 64 large pages (2 kB), and a small block
(16 kB) composed of 32 small pages (512 B). Initially, the
manufacturers supported a small block scheme, but as the
capacity of flash memory increases, it needs to handle a large
number of pages. However, it is hard to control a large number
of pages because NAND flash memory contains an 8- or 16-bit
microcontroller; therefore, the manufacturers now support a
large block scheme as an alternative.

The read and write operations are performed in the unit of a
page, whereas the erase operation is performed in the unit of a
block. As shown in Table 1, the operations have various
activity times [4], [5]. Because the unit of the read/write
operations differs from that of the erase operation, flash
memory incurs much overhead to update in place so that data
is written to free space, and old versions of data become invalid.
Furthermore, because the read operation in sequential access is
faster than the read operation in random access, the spatial
locality affects I/O performance.

The flash translation layer (FTL), a type of middleware, has
been employed to connect the file system and the structure of
NAND flash memory since the flash memory and a hard disk
have different hardware characteristics. Specifically, NAND
flash memory has a limited block life cycle of 100,000 times
for the single-level-cell type and that of 10,000 times for the
multi-level-cell type, respectively. Thus, FTL performs out-
place update due to the characteristics of flash memory.

As the capacity of NAND flash memory continues to rapidly
increase, the address translation mechanism of the FTL is
becoming a critical design issue in terms of performance
improvement and memory space requirement.

The adaptive FTL (AFTL), a well known flash memory
management mechanism, combines two different granularities
in address translation to exploit the advantages of page
mapping and block mapping and enhances the address
translation performance [6].

The AFTL uses hash tables for address translation. However,
its fixed memory space overhead becomes 75% since it uses
double pointers for each bucket. For example, the AFTL uses
an additional 4 B single pointer for 8 B data in a coarse-grained

hash table. In a fine-grained hash table, a slot uses additional
8 B double pointers for 12 B data. Furthermore, the
improvement ratio of the AFTL address translation time is
insignificant even when the size of the fine-grained hash table
becomes large.

To resolve this problem, we propose a clustered FTL
(CFTL), which uses clustered hash tables as a data structure
for the address translation and a two-level software cache
technique. The proposed CFTL enhances the address
translation performance by combining block mapping (a
coarse-grained clustered hash table) and page mapping (two-
level fine-grained clustered hash tables) and reducing
memory space utilization. In addition, anticipatory I/O
management using a continuity counter and a prefetch
mechanism enhances the performance of consecutive address
translation.

This paper is organized as follows. Section II describes the
related works on other FTL algorithms. Section III describes
the address translation mechanism for CFTL, and section IV
presents experimental results. Finally, section V concludes the
paper.

II. Related Works

1. Early Flash Translation Layer

The early FTL adopted a page-level address translation
mechanism [7]. The early FTL represents a typical fine-grained
FTL design.

Basically, the address translation table in an FTL is held in
the random access memory (RAM) while the system is
powered and the relationship between the logical block
number used in the operating system and the physical block
number of individual block or page is backed up in the spare
area of the flash memory. The relationships are used to
translate the logical block address (LBA) into the physical
block address (PBA).

For example, as shown in Fig. 2, if we assume that a block
consists of 8 pages, the LBA 8 is mapped to the PBA (8, 2) by
the translation table. Its translation speed is fast because the
address translation information is stored by page unit. However,
the translation table becomes large because the address
translation is performed by the unit of a page. When the size of
the flash memory is 512 MB with a page size of 512 B, it
requires 1,048,576 (512×1024×1024/512) entries of the
address translation table to store the address translation
information. When the size of an address information slot is
4 B, the early FTL requires 4 MB RAM space to convert from
the LBAs to the PBAs. Moreover, it incurs a fixed overhead of
128 B per block 16 kB.

792 Kwanghee Park et al. ETRI Journal, Volume 30, Number 6, December 2008

Fig. 2. Early flash translation layer.

(7, 30)

(7, 31)

(8, 0)

(8, 1)
(8, 2)

(8, 3)

(8, 31)

(9, 0)

Physical block address
(block, page)

User data area Spare area

(10, 3)

(0, 2)

(5, 23)

(2, 10)

(0, 31)

(1, 2)

(0, 30)

(1, 0)

(8, 2)

2

1

0

3

4

5

6

7

8

LBA=8

… … …

Address translation table in an
early FTL (in main memory)

Flash memory

2. NAND Flash Translation Layer

The NAND FTL (NFTL) designed by M-Systems adopts a
block-level address translation mechanism. NFTL represents a
typical coarse-grained flash translation layer design [8]-[11]. In
NFTL, an LBA is divided into a virtual block address (VBA)
and a block offset, where the VBA is the quotient when the
LBA is divided by the number of pages in a block, and the
block offset is the remainder. Each VBA is translated into a
primary block and a replacement block, and the block offset is
the order of the primary block.

When a write request is issued, data is written to the page
corresponding to the block offset in the primary block. Because
the subsequent write requests cannot overwrite the same pages
in the primary block, a replacement block is needed to handle
subsequent write requests, and the contents of the repeated
write requests are sequentially written to the replacement block.

For example, as shown in Fig. 3, if we assume that a block
consists of 8 pages and the LBA is 1,284, the LBA is divided
into 8, and the VBA and the block offset become 160 and 3,
respectively. Therefore, the corresponding primary PBA
(PPBA) and the replacement PBA (RPBA) are 100 and 588,
respectively. On the other hand, if the data is overwritten
several times (as data A or B in the figure), it will be updated in
the corresponding replacement block.

In NFTL, the translation table becomes small because the
address translation is performed by the unit of a block. When
the size of the flash memory is 512 MB with a page size of
512 B, it requires 32,768 (512×1024/16) entries of the address
translation table to store the address translation information.
When the size of an address information slot is 4 B, the NFTL
requires 128 kB RAM space to convert from the LBAs to the
PBAs.

Fig. 3. NAND flash translation layer.

(VBA, PPBA, RPBA)

(160, 100, 588)

A
B
C
D
E

A primary block
100

A
B
A
B
A
A
B
B

A replacement
block 588

Address translation table in NFTL
(in main memory)

NAND flash memory

block
offset = 3

LBA=1,284
VBA=160

...

...

Li
ne

ar
 s

ea
rc

h

3. Adaptive Flash Translation Layer

The AFTL adopts a hybrid address translation mechanism
that combines page-level address translation with block-level
address translation.

With respect to a request for address translation, if AFTL
finds a matching LBA in a fine-grained hash table, the
matching address is translated by the table using a page-level
address translation mechanism. Otherwise, the address is
translated by a coarse-grained hash table using a block-level
address translation mechanism.

The AFTL provides a switching policy to switch the most
recently used mapping information to the fine-grained address
translation table and, at the same time, switch the least recently
used mapping information to the coarse-grained address
translation table because of the limited resource of the fine-

Fig. 4. Adaptive flash translation layer.

Fine-grained
hash table

A
B
C
D
E

A
B
A
B
A
A
B
B

A primary block
(PPBA)

A replacement
block (RPBA)

Address translation table in AFTL
(in main memory)

NAND flash memory

Coarse-grained
hash table

.

.

.

.

.

.

.

.

.

.

.

.

(A, RPBA+5)
Next

Previous

(B, RPBA+7)
Next

Previous

(VBA, PPBA, RPBA)
Next

ETRI Journal, Volume 30, Number 6, December 2008 Kwanghee Park et al. 793

grained address translation table [6].
For example, as shown in Fig. 4, if the VBA “A” referenced

in the RPBA is translated into PBA, the AFTL looks up a fine-
grained hash table. If the VBA is found, the corresponding
RPBA and offset are returned. Otherwise, the AFTL searches
the coarse-grained hash table again.

Unlike NFTL, when the VBA exists in a fine-grained hash
table, AFTL is able to translate without linearly searching for
the RPBA since a fine-grained hash table stores the RPBA and
offset, which enables page-level address translation.

III. Address Translation Mechanism for CFTL

1. Overview

CFTL consists of three clustered hash tables as shown in
Fig. 5. First, two fine-grained clustered hash tables are designed
as a two-level software cache. A short fine-grained clustered hash
table stores the small number of slots with the most frequently
referenced addresses, and a long fine-grained clustered hash table
stores the large number of slots with frequently referenced
addresses. Second, a coarse-grained clustered hash table has hit
count and continuity counter fields as well as address
information. The hit count field is used to select the frequently
referenced slots, and the continuity counter field is used to
distinguish whether addresses are consecutive or not.

There are several advantages of the address translation
mechanism for CFTL. First, the structure of a clustered hash
table which is adopted from the structure of a linear table and a
hash table incurs less memory overhead than the traditional
hash table. Also, it can preserve the locality of reference with

respect to subblocks in a bucket because it groups subblocks
with adjacent addresses into the same bucket. Second, the use of
two-level fine-grained clustered hash tables adopted from a
software cache technique reduces the miss penalty and decreases
the access frequency of the coarse-grained clustered hash table,
which entails relatively large address translation overhead. Third,
the overhead of the address translation is reduced by using a
continuity counter in the coarse-grained clustered hash table
when a request for address translation with respect to consecutive
VBAs occurs. Fourth, the anticipatory I/O management using a
prefetch scheme enhances the performance of the address
translation because it prefetches whole pages referenced in the
bucket including the subblock matched with the requested LBA
if the requested LBA corresponds with one of the subblocks in
the fine-grained clustered hash tables.

When the system is powered up, the procedure of building the
address translation table is as follows. Generally, LBAs are
stored in the spare areas of pages. For that reason, CFTL reads all
of the spare areas of the flash memory to fill the address
translation table. The loaded logical addresses are inserted into
corresponding slots in the coarse-grained clustered hash table in
order. When CFTL has finished the address translation table
setup, it waits for the I/O requests from the host. If a write request
is received from the host, the data and the logical block address
are written to the corresponding physical page and spare area,
respectively. Subsequently, the corresponding slot of the address
translation table is updated to the new physical address.

Figure 5 presents an overview of the address translation
process in CFTL. When a request for address translation with
respect to a specific LBA occurs, CFTL first searches the short
fine-grained clustered hash table. If it finds a matching LBA in

Fig. 5. Overview of address translation mechanism for CFTL.

Short fine-grained clustered hash table
(Level 1)

LBAw RPBAw Offset NRU
LBAx RPBAx Offset NRU
LBAy RPBAy Offset NRU
LBAz RPBAz Offset NRU

If search fails

If search fails, translate
LBA into VBA

<Step1> <Step2>

<Step3>
If the LBA is found

If the VBA is found
<Final step>

The corresponding PBA and
offset are returned

Long fine-grained clustered hash table
(Level 2)

LBAẃ RPBA ẃ Offset NRU
LBA x́ RPBA x́ Offset NRU
LBA ý RPBA ý Offset NRU
LBA ź RPBA ź Offset NRU Hit count

Coarse-grained clustered hash table

VBA1 PPBA1 RPBA1 Hit count Continuity

VBA2 PPBA2 RPBA2

VBA3 PPBA3 RPBA3

VBA4 PPBA4 RPBA4

VBA5 PPBA5 RPBA5

Hit count
Hit count

Hit count

Hit count

Hit count

Hit count

Hit count

Continuity

Continuity

Continuity

Continuity

If th
e LBA is found

794 Kwanghee Park et al. ETRI Journal, Volume 30, Number 6, December 2008

the table, the address translation is completed and the
referenced page using the corresponding PBA and offset is
transferred to the host.

If search in the short fine-grained clustered hash table fails, it
searches the long fine-grained clustered hash table. If it finds a
matching LBA in the table, the address translation is completed,
and the referenced page using the corresponding PBA and
offset is transferred to the host. Otherwise, it searches the
coarse-grained clustered hash table using a block mapping
mechanism. It translates the LBA into a VBA with offset. It
hashes the calculated VBA to find the bucket that stores PPBA
and RPBA. If the corresponding PPBA and offset are valid, the
data is transferred to the host. If not, CFTL searches the
corresponding page of the RPBA in order, and then the
corresponding data is transferred to the host.

2. Traditional Hashing Problems

Basically, most FTLs and the address translation scheme in
virtual memory use hash tables to translate logical addresses
into physical addresses. However, address translation schemes
using hash tables have two disadvantages. The first problem is
loss of locality of reference. The more the number of addresses
increases according to the capacity of storage, the worse this
problem becomes because the traditional hash table becomes
sparse. Generally, the hash table consists of linked lists of buckets,
and each bucket contains single or multiple pointer fields. The
sparse hash table with linked-lists has many empty buckets; thus,
a considerable amount of memory space is allocated in vain. The
second problem is missing time due to hashing. Generally, the
hash function makes use of mathematical function. If a hash
function’s computational complexity is low, its loss time is small
but many collisions will occur. Otherwise, it can avoid collision
but its performance will decrease.

3. Clustered Hash Table

Since the address translation time of a linear table increases
proportionally to its size, it is not adaptable for mass flash
memory. As shown in Fig. 6, the memory usage of a hash table
increases more rapidly than that of a linear table since it wastes
memory space by using double-linked lists including the
previous pointer and the next pointer.

To resolve this problem, as shown in Fig. 7, we propose a
clustered hash table as a data structure for address translation in
the CFTL. This approach was originally used for a virtual
memory paging method in Solaris 2.5, a commercial operating
system on UltraSPARC-based computers of Sun Microsystems
[12]. The clustered hash table is composed of buckets, which are
sets of subblocks. The number of subblocks in a bucket is the
subblock factor. The clustered hash table reduces the number of

pointers to 1/N by including N subblocks in the same bucket. It
also reduces the average case search time to O(log N) during the
address translation. Therefore, its memory usage for pointers is
less than that of the hash table. Furthermore, since consecutive
and concurrently used data is stored in the same bucket, the
clustered hash table can preserve the locality of reference with
respect to a set of address translation requests.

4. Continuity Counter

As shown in Fig. 8, the coarse-grained clustered hash table
includes continuity counters to represent the number of
continuous blocks. The continuity counter is set to C if the
number of the continuous PPBA with respect to consecutive
VBAs is C. This enables address translation without searching

Fig. 6. Structure of conventional hash table using doubly-linked
lists.

VBA Offset

Hash

+

Hash base

Address #X
Next

Previous

Address #Y
Next

Previous

Address #X+1
Next

Previous

Address #Y+1
Next

Previous.. .

Fig. 7. Structure of clustered hash table.

VBA or LBA Boff Offset

Hash

+

Hash base

Address #N
Next

Address #X+N-1

Address #X
Address #X+1

…

Address #1
Address #2

…

...
Next

Fig. 8. Example of a bucket in the coarse-grained clustered hash
table.

VBA PPBA RPBA Continuity
counter

Hit
count

512 200 800 4 2
516 210 810 2 3

…
518 220 820 0 1
519 221 750 3 4

Next pointer

ETRI Journal, Volume 30, Number 6, December 2008 Kwanghee Park et al. 795

If (h
it count>threshold)

then demote the slotIf (N
RU bits==(0,0))

then demote the slot

Fig. 9. coarse-to-fine and long-to-short promotion policy; fine-to-
coarse demotion policy.

If (hit count > threshold)
then promote the slot

Long fine-grained
clustered hash

table

Short fine-grained
clustered hash

table

Corse-grained
clustered hash

table

If (NRU bit==(0,0))
then demote the
slot

the address translation tables.

For example, if the VBA is 512, the corresponding PPBA is
200, the continuity counter is 4, and the incremental value of the
VBA is less than or equal to 4, then we can obtain the next
PPBAs without searching the address translation tables.
Furthermore, in that case, it is not necessary for the coarse-grained
clustered hash table to have the address information of
consecutive VBAs. Therefore, this technique reduces the memory
space requirement of the coarse-grained clustered hash table.

5. Two-Level Fine-Grained Clustered Hash Tables

As shown in Fig. 9, two-level fine-grained clustered hash
tables are implemented using the software cache technique,
adopting the hardware translation lookaside buffer concept to
enhance the performance of CFTL. Even though the use of two-
level fine-grained clustered hash tables does not help reduce the
access time to the fine-grained clustered hash tables due to the
limitation of the software cache mechanism, it can reduce the
miss penalty and decrease the access frequency of the coarse-
grained clustered hash table. Therefore, it can reduce the address
translation time since most of the address translation is
performed in the fine-grained clustered hash tables.

For the two-level address translation tables, the data
migration policy for a coarse-to-fine switch and a fine-to-
coarse switch is needed. In the case of a coarse-to-fine switch,
for example, if a subblock with a specific LBA in the coarse-
grained clustered hash table is frequently accessed and its hit
count is increased more than the threshold, the subblock is
promoted to the long fine-grained clustered hash table and the
hit count of this subblock is cleared. If the same subblock is
increasingly accessed and its hit count is again more than the
threshold, it is again promoted to the short fine-grained
clustered hash table. Meanwhile, the not recently used (NRU)
page replacement method is used to demote unused subblocks
to the coarse-grained clustered hash table. This is called a fine-

to-coarse demotion policy.

6. Not Recently Used

NRU is a variation of the least recently used (LRU)
approximation technique. It has less overhead than
conventional LRU but provides similar performance [13].

NRU uses a system timer and determines unused slots
periodically by using bit vectors, namely, a reference bit and a
modify bit. Both the short fine-grained clustered hash table and
the long fine-grained clustered hash table have NRU bits for
the slot management. NRU bits are stored in the RAM, and
they are initialized when the CFTL starts. For a fine-to-coarse
switch, as shown in Table 2, two status bits are used to
determine whether a subblock is demoted. For example, if the
reference bit and modify bit of a subblock with a specific
address are both zero, it is assumed that the subblock has not
been used recently. The subblock is moved from the fine-
grained clustered hash table to the coarse-grained clustered
hash table, and the unused subblock is removed from the fine-
grained clustered hash tables.

Table 2. Demotion table using NRU policy.

Reference bit Modify bit Description

0 0 Best slot to replace, so the slot is demoted

0 1
The slot will probably be updated again
soon, so the slot stays in place

1 0
The slot will probably be read again
soon, so the slot stays in place

1 1
The slot will frequently be used, so the
slot stays in place

7. Prefetching Whole Pages from a Bucket

In general, FTL translates address and transfer data
whenever an address translation request with respect to a
specific LBA occurs. The prefetching method proposed in this
paper prefetches whole pages referenced in a bucket, including
the subblock matched with the requested LBA in the fine-
grained clustered hash table.

The clustered hash table is a data structure for address
translation which stores consecutive LBAs and corresponding
PBAs in the same bucket. Therefore, if a read request of a page
with a specific LBA occurs and a certain subblock in the fine-
grained clustered hash table is matched with the LBA, physical
random pages referenced in the subblocks adjacent to the
matched subblock are prefetched. Even if subblock pages are
not composed of consecutive physical pages, our proposed
prefetching scheme enables fast random access on NAND

796 Kwanghee Park et al. ETRI Journal, Volume 30, Number 6, December 2008

Fig. 10. Read operation (a) in traditional FTLs and (b) for prefetch
pages in CFTL.

Read
request

Look up
the table

Read a page

Address #X
Transmit to

the host

Read
request

Look up
fine-grained

tables

Prefetched
pages?

Read a bucket
Address #1

…

Address #N

Transmit
to the host

(a)

(b)

Yes

No Prefetch
consecutive

pages to RAM

Store a
page to
RAM

flash memory.

Figure 10(a) illustrates the sequence of a read operation in
the traditional FTL. When a read command is requested from
the host, the FTL searches the address translation table, reads
the page, copies it to memory, and transfers it to the host.
Figure 10(b) illustrates the read operation sequence of
prefetching pages referenced by subblocks in a specific bucket
in the clustered hash table. In this case, the CFTL prevents
repetitive memory loading and repetition of command
execution into the flash memory every time. Furthermore, the
read time for the next read request can be reduced since
multiple pages are prefetched.

IV. Performance Evaluation

To evaluate the proposed CFTL design, we compared CFTL
with NFTL and AFTL in terms of address translation
performance. For the experimental environment, we
implemented the FTL schemes in a NAND flash memory
simulator using the memory technology device open source of
a LINUX kernel 2.6.17 environment [14]. We used a 512 MB
NAND flash memory for comparison of the address translation
time and the memory space requirement. In addition, we used
256, 512, 1024, 2048, 4096, and 8192 MB NAND flash
memories for comparison of the block mapping table size.

To evaluate the memory space requirement, we set the ratio
of the short fine-grained clustered hash table and the long fine-
grained clustered hash table as 1:4. The number of maximum
short fine-grained slots (MSFS) was set to 2,500 and the
number of maximum long fine-grained slots (MLFS) was set
to 10,000. Therefore, the number of maximum fine-grained
slots (MFS) which is the sum of MSFS and MLFS was 12,500.

1. Address Translation Time

To evaluate the address translation time and the performance
of the proposed method, we used two different block-level

Table 3. Block-level trace workloads.

Name Type Duration Year

USB USB personal storage 5 days 2008

Multimedia Mobile phone 5 days 2008

Fig. 11. Relative address translation times of FTLs per workload
(NFTL=100%).

60

65

70

75

80

85

90

95

100

USB Multimedia
Workload type

A
dd

re
ss

 tr
an

la
tio

n
tim

e
(%

)
NFTL AFTL CFTL
CFTL+continuity CFTL+prefetch Enhanced CFTL

trace workloads as shown in Table 3. Each workload is a trace
of I/O requests, and every entry is described by I/O time, I/O
type, and real data. The first workload, USB, is a trace from the
USB memory drive used for personal document files and
source code files; the FAT32 file system resides on the USB
memory drive. The second workload, Multimedia, is a trace
from an external storage of the Motorola MS 700 mobile
phone used for mobile multimedia files, such as photos, videos,
e-books, audio files, and dictionary files. The FAT32 file
system resides on the mobile phone. All workloads reflect real
activities in daily life that totally fill the flash memory,
randomly delete files, create files, and so on.

The test was repeated ten times under identical conditions.
For this experiment, the subblock factor in the clustered hash
tables was set to 8 and the threshold for coarse-to-fine and
long-to-short promotion policies was set to 10.

As shown in Fig. 11, the address translation mechanism of
pure CFTL [15] yields better performance and its address
translation time is roughly 13% less than that of NFTL and
about 7% less than that of AFTL.

In addition, in the case of adding anticipatory I/O management
using continuity counters and the prefetch technique, the address
translation time of enhanced CFTL is approximately 20% less
than that of NFTL and about 14% less than that of AFTL.

2. Memory Space Requirement

Figure 12 shows the memory space requirements of NFTL,

ETRI Journal, Volume 30, Number 6, December 2008 Kwanghee Park et al. 797

Fig. 12. Relative memory space requirements of NFTL, AFTL,
and CFTL (AFTL=100%).

0

10

20

30

40

50

60

70

80

90

100

MSFS/MLFS

R
eq

ui
re

d
m

em
or

y
sp

ac
e

(%
) AFTL

CFTL_8
CFTL_16
CFTL_32
CFTL_64
NFTL

1k/
4k

2k/
8k

3k/
12k

5k/
20k

10k/
40k

15k/
60k

20k/
80k

25k/
100k

30k/
120k

Fig. 13. Size of block mapping table in NFTL, AFTL, and CFTL.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0 256 512 1,024 2,048 4,096 8,192
Sizes of flash memory (MB)

B
lo

ck
 m

ap
pi

ng
 ta

bl
e

si
ze

 (k
B

)

AFTL
CFTL _8
CFTL _64
NFTL

AFTL, and CFTL with respect to various MFS values when
the subblock factors of CFTL are 8, 16, 32, and 64, respectively.

Note that the memory space requirement of NFTL is
constant with respect to various MFS values because there is
no page mapping table in NFTL.

The result can be explained by the following facts. First, the
size of the long fine-grained clustered hash table radically
affects the performance in terms of the memory space
requirement. This is because the long fine-grained clustered
hash table is relatively larger than the short fine-grained
clustered hash table and the coarse-grained clustered hash table.
Second, the memory space requirement of AFTL sharply
increases as the MFS increases. In contrast, that of CFTL
gradually increases as the MFS increases, since CFTL reduces
the memory space overhead by using clustered hash tables.
Third, the ratio of the memory space requirement in CFTL is
lower than that of AFTL by a maximum of 67.68%, 71.72%,
72.40%, and 72.73% when the subblock factors of CFTL are 8,

Table 4. Comparison of block mapping table size for small block

Flash memory size (MB) NFTL (kB) AFTL (kB) CFTL_8 (kB)

256 64 192 80

512 128 384 160

1,024 256 768 320

2,048 512 1536 640

4,096 1,024 3,072 1,280

8,192 2,048 6,144 2,560

Table 5. Comparison of block mapping table size for large block.

Flash memory size (MB) NFTL (kB) AFTL (kB) CFTL_8 (kB)

256 8 24 11

512 16 48 22

1,024 32 96 44

2,048 64 192 88

4,096 128 384 176

8,192 256 768 352

16, 32, and 64, respectively. The ratio was calculated based on
the memory space requirement of AFTL. To evaluate the
memory space requirements of the block mapping table in
NFTL, AFTL, and CFTL, we used 256, 512, 1024, 2048, 4096,
and 8192 MB NAND flash memories.

Figure 13 shows the size of the block mapping table in
NFTL, AFTL, and CFTL using various subblock factors. We
averaged the size of the block mapping tables for 16 kB and
128 kB block units. The results show that the rate of size
increase of the block mapping table of CFTL is at most
72.73% lower than that of AFTL regardless of flash memory
size, and the size of the block mapping table in CFTL is similar
to that of NFTL.

V. Conclusion

The flash memory will continue to grow in popularity as its
capacity increases and its cost decreases. Flash memory storage
systems, such as Solid State Drive (SSD), will take a greater
share of the market as an alternative mass storage system.
Therefore, enhancement of the performance of address
translation is imperative, and a small address translation table is
similarly important.

The proposed CFTL is appropriate for a mobile mass storage
system with NAND flash memory since its performance is
better than that of traditional FTLs. Specifically, our technique
reduces memory consumption by up to 72.73% and improves

798 Kwanghee Park et al. ETRI Journal, Volume 30, Number 6, December 2008

speed by roughly 14% over the AFTL approach. It will be
possible to adapt CFTL, to SSD or H-HDD if the hardware
interface problems of respective storage devices are resolved.

References

[1] J. Kim et al., “A Space Efficient Flash Translation Layer for
CompactFlash Systems,” IEEE Trans. Consumer Electronics, vol.
48, no. 2, May 2002, pp. 366-375.

[2] S.L. Min and E.H. Nam, “Current Trends in Flash Memory
Technology,” 11th Asia and South Pacific Design Automation
Conf., Yokohama, Japan, Jan. 2006.

[3] CompactFlash Association, “CompactFlash Specification
Revision 4.1,” http://www.compactflash.org.

[4] Samsung Electronics, “K9K8G08U1A”, Data Sheet of NAND
Flash Memory.

[5] Samsung Electronics, “K9F1208U0C”, Data Sheet of NAND
Flash Memory.

[6] C.H. Wu and T.W. Kuo, “An Adaptive Two-Level Management
for the Flash Translation Layer in Embedded Systems,”
IEEE/ACM Int’l Conf. Computer Aided Design, San Jose, CA,
Nov. 2006.

[7] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory
Based File System,” Proc. the USENIX Technical Conf., Jan.
1995.

[8] Intel Corporation, Understanding the Flash Translation Layer
(FTL) Specification.

[9] Intel Corporation, Software Concerns of Implementing a Resident
Flash Disk.

[10] A. Ban, 1995. Flash file system. US patent 5,404,485. Filed
March 8, 1993; Issued April 4, 1995; Assigned to M-Systems
Flash Disk Pioneer Ltd., Tel Aviv, Israel.

[11] A. Ban, 1999. Flash file system optimized for page-mode flash
technologies. US patent 5,937,425. Filed October 16, 1997;
Issued August 10, 1999; Assigned to M-Systems Flash Disk
Pioneer Ltd., Tel Aviv, Israel.

[12] M. Talluri, M.D. Hill, and Y.A. Khalidi, “A New Page Table for
64-bit Address Spaces,” Proc. the 15th ACM Symp. Operating
Systems Principles, Dec. 1995, pp. 184-200.

[13] A. Silberschatz, P.B. Galvin, and G. Gagne, Operating System
Concepts, 7th Edition, John Wiley & Sons, Inc., 2005, pp. 315-
326.

[14] MTD, “Memory Technology Device (MTD) subsystem for
Linux,” http://www.linux-mtd.infradead.org

[15] K.-H. Park and D.-H. Kim, “A Clustered Flash Translation for
Mass Storage CompactFlash Systems,” IEEE Int’l Conf.
Consumer Electronics, Jan 12-14 2008, Las Vegas, U.S.A.

Kwanghee Park received the BS degree in
computer and information technology from the
Yong-In University, Korea, in 2005, and the MS
degree in electronic engineering from Inha
University, Incheon, Korea, in 2008. He is
currently working toward the PhD degree in
electronic engineering at Inha University,

Incheon, Korea. His current research interests include intelligent
algorithm in storage system, automotive software technology.

Junsik Yang received the BS degrees in
computer and information engineering from
Inha University, Incheon, Korea, in 2008 and
He is working toward the MS degree in
electronic engineering, at Inha University,
Incheon, Korea. His research interests include
hybrid storage systems and recommendation

system.

Joon-Hyuk Chang received the BS degree in
electronics engineering from Kyungpook
National University, Daegu, Korea in 1998 and
the MS and PhD degrees in electrical
engineering from Seoul National University,
Korea, in 2000 and 2004, respectively. From
March 2000 to April 2005, he was with Netdus

Corp., Seoul, as a chief engineer. From May 2004 to April 2005, he
was with the University of California, Santa Barbara, in a postdoctoral
position to work on adaptive signal processing and audio coding. In
May 2005, he joined Korea Institute of Science and Technology, Seoul,
as a Research Scientist to work on speech recognition. Currently, he is
an assistant professor in the School of Electronic Engineering at Inha
University, Incheon, Korea. His research interests are in speech coding,
speech enhancement, speech recognition, audio coding, and adaptive
signal processing.

Deok-Hwan Kim received the BS degree in
computer science and statistics from Seoul
National University, Korea in 1987 and the MS
and PhD degrees in computer engineering from
Korea Advanced Institute of Science and
Technology, Daejeon, Korea, in 1995 and 2003,
respectively. From March 1987 to Feb. 1997, he

was with LG Electronics, as a senior engineer. From Jan. 2004 to Feb.
2005, he was with University of Arizona, Tucson, in a postdoctoral
position to work on multimedia systems and embedded software.
Currently, he is an associate professor in the School of Electronic
Engineering at Inha University, Incheon, Korea. His research interests
include embedded systems, intelligent storage systems, multimedia
system, and data mining.

