• Title/Summary/Keyword: Horticultural crops

Search Result 374, Processing Time 0.028 seconds

Effects of Continuous Application of CO2 on Fruit Quality Attributes and Shelf Life during Cold Storage in Cherry Tomato

  • Taye, Adanech Melaku;Tilahun, Shimeles;Park, Do Su;Seo, Mu Hong;Jeong, Cheon Soon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.300-313
    • /
    • 2017
  • 'Unicon' cherry tomato (Solanum lycopersicum) is one of the most highly perishable horticultural crops due to its high water content and respiration rate. This study was carried out to assess the effect of continuous application of $CO_2$ (control [air], 3%, and 5%) on the quality and shelf life of cherry tomato fruits stored at $10^{\circ}C$ and $85{\pm}5%$ relative humidity (RH) at two maturity stages (pink and red). Continuous application of $CO_2$ did not affect the soluble solids content (SSC) or titratable acidity (TA) of the fruit at either maturity stage during storage. However, there was a significant difference among treatments in terms of flesh firmness, cell wall thickness, pectin content, vitamin C content, skin color, lycopene content, weight loss, ethylene production rate, respiration rate, and acetaldehyde and ethanol production. Fruits treated with 5% $CO_2$ maintained their high quality with regards to vitamin C, skin color ($a^*$), lycopene content, weight loss, physiological parameters (ethylene production rate, respiration rate, and volatile compounds), flesh firmness, cell wall thickness, and pectin content at both maturity stages compared with 3% $CO_2$ treatment and the control. Continuous application of $CO_2$ (5%) reduced the ethylene production rate and the production of volatile compounds during storage. Therefore, cherry tomato 'Unicon' fruit can be stored for two weeks without losing fruit quality at both maturity stages under continuous application of 5% $CO_2$ as a postharvest treatment.

Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

  • Alishiri, Athar;Rakhshandehroo, Farshad;Zamanizadeh, Hamid-Reza;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.260-273
    • /
    • 2013
  • The incidence and distribution of Tobacco mosaic virus (TMV) and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP) gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100%) among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each subgroup was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

Optimum germination temperature and seedling root growth characteristics of Camelina (카멜리나 (Camelina sativa Crtz.) 발아 적온 및 발아초기 뿌리생육 특성)

  • Park, Joon Sung;Choi, Young In;Kim, Augustine Yonghwi;Lee, Sang Hyub;Kim, Kyung-Nam;Suh, Mi Chung;Kim, Gi-Jun;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • A genus Camelina has been attracted as a promising oil crop, especially available in drought and marginal conditions. Due to more demands on arable land for bioenergy crops, price of agricultural products has been a challengeable issue. In that respect, development of Camelina crop with higher germination rate and germination energy can be a strategy to secure seedling establishment, nutrient uptake and long vegetative period. In order to be easily available in the field and laboratory conditions, Camelina seed needs to be optimized for its germination temperature. Germination temperature regime was in a range of 8 to $32^{\circ}C$ initially, and consecutively narrowed down to 8 to $20^{\circ}C$. Based on the temperature range, Camelina germinated greater than 96% at $8-16^{\circ}C$ in two weeks after sowing, but germination rate started to decrease at the higher than $24^{\circ}C$ and was significantly low at higher than $32^{\circ}C$. In terms of rapid time to reach the maximum germination rate and greater germination energy, temperature ranged from 12 to $16^{\circ}C$ was found to be desirable for Camelina germination. Although germinationa rate was greater at $16^{\circ}C$, lower temperature close to $12^{\circ}C$ would be favored for the field conditions where greater root growth leading to healthier seedlings and better nutrient or water availability is considerably demanded.

Evaluation on the Environmental and Social Value Awareness of the Heat Supply for the Horticultural Greenhouse using Thermal Effluents from Power Plant (화력발전소 온배수열 활용 시설하우스 열공급에 대한 환경 및 사회적 가치 인식 비교 분석)

  • Kim, Ga-Hee;Ahn, Cha-Soo;Um, Byung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.125-134
    • /
    • 2018
  • Recently, interest in alternative energy has been increasing to reduce greenhouse gas emissions and fossil fuel consumption in accordance with the United Nations Framework Convention on Climate Change(UNFCCC). Accordingly, there is a need to use waste heat that unused throughout industrial systems for lowering the concentration of energy on fossil fuels. In particular, government support projects for the energy recycling of agriculture and fisheries such as cultivation of tropical crops and aquaculture are being actively carried out by utilizing waste heat and thermal effluents caused from large-scale industrial complexes including power plants. The study was conducted on supplier (power plant), consumer (farmer) and stakeholders (constructor and local governments) of domestic demonstration areas using waste heat that is abandoned from the power plant in the form of thermal effluents. It investigated the overall improvement and feasibility of government funded projects through field interviews and questionnaire-type surveys. The results of this study are expected to provide basic directions for the operation of the project in terms of nationwide expansion and diffusion of the heat source supply project at horticultural greenhouse by utilizing the thermal effluents from power plant.

Selection of appropriate nutrient solution for simultaneous hydroponics of three leafy vegetables (Brassicaceae)

  • Young Hwi, Ahn;Seung Won, Noh;Sung Jin, Kim;Jong Seok, Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.643-653
    • /
    • 2022
  • This study investigated which nutrient solution is suitable for growth and secondary metabolite contents when three different vegetable plants are grown simultaneously in one hydroponic cultivation bed. Seeds of pak choi (Brassica compestris L. ssp chinsensis), red mustard (Brassica juncea L.), and arugula (Eruca sativa Mill.) were sown in the shape of a triangle in three places on rockwool cubes. The rockwool cubes were placed in semi deepflow technique (semi-DFT) hydroponic systems in a rooftop greenhouse after three weeks of growth as seedlings then cultivated with four different nutrient solutions, Korea Horticultural Experiment Station (KHE), Hoagland, Otsuka-A, and Yamazaki, at the rooftop greenhouse for two weeks. The leaf area of pak choi cultivated in Otsuka-A was the largest but SPAD values, leaf area, and fresh weight of arugula were highest with KHE treatment. The total glucosinolate (GSL) content of pak choi was 151.7% higher in KHE than in Hoagland, and there was no significant difference in Yamazaki and Otsuka-A treatments. The total GSL content of red mustard was 34.6 μmol·g-1 in Hoagland, and it was 32.6% higher in Hoagland than in Yamazaki. Total GSL content of arugula was 57.5% higher in Yamazaki and Hoagland nutrients than in KHE and Otsuka-A nutrients solutions. The total GSL content of three plants grown with KHE was 40.7% higher than with Yamazaki, and the other nutrient solutions did not show significant differences. Therefore, KHE nutrient solution is considered suitable for nutrient solution composition for the cultivation of three different Brassicaceae crops in a single hydroponic cultivation system.

Effect of Sludge-Fertilizer on Growth of Horticultural Plants (스럿지비료(肥料)가 원예작물(園藝作物)의 생육(生育)에 미치는 효과(效果))

  • Ku, Ja Hyeong;Kim, Tae Ill;Ahn, Joo Won;Lee, Kyu Seung;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.16-27
    • /
    • 1992
  • To determine a potential of new sludge fertilizer for horticultural crops, comparative studies between commercial fertilizers (Jandibiryo and Wonyebokbi) and sludge fertilizer (Sludgebiryo) were made through examining the growth responses on zoysiagrass (Zoysia japponica Steud.) and several horticultural plants. 1. The pH of new sludge fertilizer remained near 6.5 regardless the particle size. The solubility of elements was highest in phosphorus, followed by nitrogen and potassium in the order. Especially, desorption of potassium was continued up to 48 hrs after solubilization. 2. There was an increase in shoot number per plant, length of stolon and rhizome, and root weight as well as clipping yield of zoysiagrass in the treatment of large size Sludgebiryo compared to small one and Jandibiryo. 3. Regardless the size of fertilizers, Sludgebiryo increased flower numbers in salvia (Salvia officinalis L. 'Hatzazz') compared to Wonyebokbi, although the difference was not great, However, leaf area and fresh weight of plant were more increased in Wonyebokbi application. 4. Flower diameter of marigold (Tagetes erecta L. 'Inca') was slightly increased in Sludgebiryo application, but the average number of lateral shoots and fresh weight per plant were significantly increased in the treatment of Wonyebokbi application. 5. Sludgebiryo effectively increased the length of both main and lateral shoots, number of flowers and weight of shoot in vinca (Vinca rosea L. 'Little Linde'), but root growth of plant was higher in Wonyebokbi application. 6, No differences between Wonyebokbi and Sludgebiryo were found in promoting the growth of leaves of perilla (Perilla frutescens Hara 'Yubsil' ), but chlorophyll content and seed weight were slightly higher in the application of Wonyebokbi compared to Sludgebiryo. In conclusion, the effectiveness of Sludgebiryo for horticultural plants was almost equal to commercial fertilizers such as Jandibiryo or Wonyebokbi. Expecially, Sludgebiryo appeared to effective on the growth of zoysiagrass, and the increase of flower size and numbers in flower crops. Results indicate that new-made Sludgebiryo can be recommended for turfgrass culture, and the flower crops in which quality depends on flower number and flower size.

  • PDF

Optimal Application Rate of Mixed Expeller Cake and Rice Straw and Impacts on Physical Properties of Soil in Organic Cultivation of Tomato (토마토 유기재배에서 혼합유박과 볏짚의 적정시용량 및 토양 물리성에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun;Jung, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • BACKGROUND: In this study, 5 different treatments such as non-treatment, mixed expeller cake 1.0 N (standard nitrogen fertilizer), rice straw, rice straw+mixed expeller cake 0.5 N, rice straw+mixed expeller cake 1.0 N were performed over 4 cropping seasons over 2 years in order to identify the optimal application rate of mixture of rice straw and mixed expeller cake, organic source in organic cultivation of tomatoes. METHODS AND RESULTS: There was no difference in all treatments in case of 200 mg/kg in the nitrate nitrogen content in soil prior to the first cropping season test under the criteria for nitrogen nutrient based on yield of crops, cultivation without fertilizers seems possible. But in the second cropping season, no treatment and rice straw showed the reduction of yield and in the third cropping season, rice-straw+mixed expeller cake 0.5 N treatment showed the significant difference. The content of nitrate nitrogen in soil prior to cropping seasons was evaluated in 160 mg/kg and standard fertilization such as mixed expeller cake, source of nitrogen, are needed due to the deficiency of nitrogen. In terms of application of organic resources, rice straw showed the effects of improvements on physical properties of soil such as bulk density, cation exchange capacity and humus contents, but the mixed expeller cake did not show any significant differences in improvements on physical properties of soil. CONCLUSION(s): Fertilizer management in organic cultivation of tomatoes is thought to produce the reliable quantity of crops as well as keep the high quality of soils by using the optimal application rate of mixed expeller cake according to the contents of nitrate nitrogen in soil and rice straw which improves the physical properties of soil.

Stable Inheritance of an Integrated Transgene and Its Expression in Phenylethylisothiocyanate-Enriched Transgenic Chinese cabbage (Phenylethylisothiocyanate 함량이 증진된 형질전환 배추에서의 도입유전자의 후대 유전 및 발현 안정성 검정)

  • Park, Ji-Hyun;Kim, Hyoung-Seok;Lee, Gi-Ho;Yu, Jae-Gyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.112-121
    • /
    • 2016
  • Development of genetically-modified (GM) crops enables the introduction of new traits to the plant to confer characteristics such as disease resistance, herbicide resistance and human health-promoting bioactivity. Successful commercialization of newly developed GM crops requires stable inheritance of integrated T-DNA and newly introduced traits through the multiple generations. This study was carried out to confirm the stable inheritance of the integrated T-DNA in $T_1$ and $T_2$ transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) that was genetically modified to increase concentrations of phenylethylisothiocyanate (PEITC), which is a potential anti-carcinogenic phytochemical. For this purpose, the IGA 1-3 ($T_1$ generation) and IGA 1-3-5 ($T_2$ generation) lines were selected by PCR and a IGA 1-3 transgenic plant ($T_1$ generation) was analyzed to confirm the T-DNA insertion site in the Chinese cabbage genome by VA-TAIL PCR. The results of this study showed that the introduced T-DNA in IGA 1 line was stably inherited to the next generations without any variations in terms of the structure of the transgenes, and this line also showed the expected transgene function that resulted in increased concentration of PEITC through the multiple generations. Finally, we confirmed the increased QR activity in IGA 1 $T_1$ and $T_2$ transgenic lines, which indicates an enhanced potential anti-carcinogenic bioactivity and its stable inheritance in IGA1 $T_1$ and $T_2$ transgenic lines.

Improvement of Arbuscular Mycorrhizal Fungi(AMF) Propagule at the Preplanting Field for Ginseng Cultivation (인삼 재배 예정지의 Arbuscular 균근균(AMF) 번식체 밀도 향상)

  • Sohn, Bo-Kyoon;Jin, Seo-Young;Kim, Hong-Lim;Cho, Ju-Sik;Lee, Do-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.170-176
    • /
    • 2008
  • This study was carried out to improve density of arbuscular mycorrhizal fungi (AMF) propagule and physiochemical properties of soil by planting crops at the preplanning field for ginseng cultivation. Winter crops, such as barley and rye and summer crops, such as sudangrass and soybean were cultivated in combination to improve AMF propagation and soil aggregation at the fields. Yield of harvested crops by plating with winter or/and summer crops was $3,045kg\;10a^{-1}$ of the only rye cultivation, $2,757kg\;10a^{-1}$ of sudangrass cultivation in combination with rye growing (rye/sudangrass) and $1,628kg\;10a^{-1}$ of soybean cultivation in combination with barley growing (barley/soybean), respectively. Soil aggregation rate was improved by cultivation with barley (45.7%) and with rye/sudangrass (45.1%), respectively. The density of AMF spores in soil was increased slowly by cultivating with winter crops. In summer crops cultivation system, density of AMF spores at sudangrass cultivated field was $64.0spores\;g^{-1}$ dried soil and it was higher than that at soybean cultivated field. External hyphae length (EHL) was $1.5{\sim}2.0m\;g^{-1}$ air-dried soil at winter crops cultivated field. However, in summer crops cultivation systems, EHL was $2.6{\sim}2.9m\;g^{-1}$ airdried soil at sudangrass cultivated field and was $1.7{\sim}2.2m\;g^{-1}$ air-dried soil at soybean cultivated filed, showing these were higher than those in non-cultivated field (control). Glomalin content of soil cultivated with crops was higher than that of control soil. Especially, the highest glomalin content was shown to $1.7m\;g^{-1}$ air-dried soil in the barley/soybean cultivation systems. These results suggested that the most effective soil management to improve AMF propagule density and soil physical properties by planting crops system was cultivating sudangrass followed by barley at the preplanning fields for ginseng cultivation.

Analysis of Bacterial Wilt Symptoms using Micro Sap Flow Sensor in Tomatoes (식물 생체정보 센서를 활용한 토마토 풋마름병 증상 분석)

  • Ahn, Young Eun;Hong, Kue Hyon;Lee, Kwan Ho;Woo, Young Hoe;Cho, Myeong Cheoul;Lee, Jun Gu;Hwang, Indeok;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.212-217
    • /
    • 2019
  • Bacterial wilt caused by Ralstonia solanacearum is a major disease that affects tomato plants widely. R. solanacearum is a soil born pathogen which limits the disease control measures. Therefore, breeding of resistant tomato variety to this disease is important. To identify the susceptible variety, degree of disease resistance has to be determined. In this study, micro sap flow sensor is used for accurate prediction of resistant degree. The sensor is designed to measure sap flow and water use in stems of plants. Using this sensor, the susceptibility to bacterial wilt disease can be identified two to three days prior to the onsite of symptoms after innoculation of R. solanacearum. Thus, this find of diagnosis approach can be utilized for the early detection of bacterial wilt disease.