• Title/Summary/Keyword: Horn type

Search Result 122, Processing Time 0.021 seconds

Cavitating-Flow Characteristics around a Horn-Type Rudder (혼 타 주위의 캐비테이팅 유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seak-Ho;Kim, Jung-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

Design and driving characteristics of Langevin type transducer for high speed processing machine (고속 가공기용 란쥬반형 진동자의 설계 및 구동특성)

  • 박민호;정동석;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.385-388
    • /
    • 2001
  • The cutting performance of a machine depends on the ability of the design of the acoustic horn to facilitate an increase in tool-tip vibration, allowing a significant amount of material to be removed. In this paper, three kinds of acoustic horns were designed and FEM was used to estimate displacement magnifications of horn tips. An optimization procedure for the profile has been followed to obtain maximum magnification, for higher rate of material removal and safe working stresses for the horn material.

  • PDF

Methodology for Environmental Adaptation Vehicle Horn Improvements (주변 환경 순응형 자동차 경적 소음 개선 방법)

  • Kim, In Su;Yang, Choong Heon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2015
  • PURPOSES : While driving, drivers are usually limited in communicating with others except for using the horn. Excessive use of the horn may cause noise pollution, quarrels between drivers and pedestrians, damage, etc. This study developed a methodology for environmental adaptation and improvements of vehicle horns. METHODS: In this study, we performed a literature review of previous studies and related technologies regarding the overuse and damage of the horn. The proposed methodology employed the paired comparison method, as well as the semantic differential method. These methods can consider various vehicle horns, such as the Sport Utility Vehicle(SUV) Horn, Van Horn, and Buzzer. In addition, we conducted a factor analysis in order to provide a direction for improvement of future horns. This research provides a means of complimenting existing intellectual property related to vehicle horns. RESULTS: As a result, the most preferred of the selected horns were the Buzzer at 86.7%. In addition, based on the factor analysis, the horns could be classified into pleasantness and comfort factors. The results indicate a positive reaction for various vehicle horns. The horn type and size of the process control have been properly developed considering the position of the vehicle and the surrounding noise measurements. CONCLUSIONS : Based on the proposed methodology, public and private sectors can use fundamental data for reasonable traffic-noise control policies.

Optimal Design of Ultrasonic Horn for Ultrasonic Drilling Processing of Ceramic Material (세라믹 소재 초음파 드릴링 가공을 위한 초음파 Horn의 최적 설계에 관한 연구)

  • Cha, Seung-hwan;Yang, Dong-ho;Lee, Sang-hyeop;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, there has been continuous technological development in the semiconductor industry, and semiconductor manufacturing technologies are being advanced and highly integrated. For this reason, ceramic material having excellent heat resistance, wear resistance, and conductivity are used as components in semiconductor manufacturing. Among them, the probe card's space transformer is used as ceramic material to prevent electronic signal noise during the electrical die sorting of semiconductor function testing. However, implementing a bulk-type space transformer with a thickness of 5.6 mm or more is challenging, and thus it is produced in a structure with a stacked ceramic film. The stacked space transformer has low productivity because it is difficult to ensure hole clogging and a precise shape. In this research, an ultrasonic horn is designed to manufacture a bulk-type ceramic space transformer through ultrasonic drilling. Vibration characteristics were analyzed according to the ultrasonic horn, and the natural frequency was measured.

Changes of Vibrational characteristics due to the spaces of the Langevin type vibrators (란쥬반형 진동자의 형상에 따른 진동특성 변화)

  • Park, Min-Ho;Jeong, Dong-Seok;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.97-102
    • /
    • 2002
  • Bolt-tightened Langevin type vibrators using longitudinal mode of bar were designed and fabricated. In order to amplify the displacement of the tip of the vibrators, stacked ceramics were used and five different shapes of the horns were designed and fabricated. Resonant frequencies and vibrational characteristics of vibrators and horns were analyzed by ANSYS(finite element analysis computer program), and the displacements of tips of the horns were measured. As results, when the number of the stacked ceramics were increased, the displacements of the tips were increased and the driving voltages were decreased. Step1 horn(BLT-Stl) showed maximum displacement of 36.92[${\mu}m$] at 36.7[kHz] with 45[Vrms] and 0.11[A]. The displacement amplification ratio was about 5.2. But, the stress of step1 horn was concentrated on intersection, where two diameters meet. To lessen the stress, step3 shaped horn is recommended.

  • PDF

A Numerical Study on the Control of the Gap Flow Using a Fluid Supply Device (유체 공급장치를 활용한 간극유동 제어에 관한 수치적 연구)

  • Seo, Dae-Won;Oh, Jung-Keun;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.578-586
    • /
    • 2009
  • Recently, horn-type rudders are generally being used at high speed container ships and are frequently suffering from the cavitation occurs on the rudder surface in the vicinity of the gap between the horn and rudder plate. In the present study, a fluid supplying device is employed as to decrease the gap cavitation of the horn-type rudder. The device is devised to inject the water against the pressure side through the nozzle installed inside of the gap to control the gap flow. Numerical calculations are performed to investigate the effectiveness of the device and the results show that the device can noticeably reduce the gap cavitation. The rates of water injection for achievement of the maximum retardations of gap flow are also sought.

Characteristics of Gap Flow of a 2-Dimensional Horn-Type Rudder Section (2차원 혼 타 단면의 간극유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seok-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.101-110
    • /
    • 2007
  • Recently, rudder erosion due to cavitation frequently has occurred at large high speed container carriers. Especially, in the case of a horn-type rudder, the rudder erosion is severe around a gap. The gap-flow characteristics are investigated through a computational method to understand the effects of a gap on the cavitation and rudder efficiency. A viscous flow theory utilizing a cavitation model is applied to calculate the flow around idealized 2-dimensional rudder sections in a full scale. The effects of gap clearance and flow-control projection are also investigated. From the computational results, the mass flow rate through a gap is found to be one of the important parameters to affect the cavitation and rudder efficiency.

Multiplication of Displacements of the Langevin Type Piezoelectric Transducer using Various Shapes of Horns

  • Park, Tae-Gone;Kim, Myong-Ho;Park, Min-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.61-65
    • /
    • 2004
  • Bolt-tightened Langevin type vibrators using longitudinal mode of bar were designed and fabricated. In order to amplify the displacement of the tip of the vibrators, stacked ceramics were used and five different shapes of the horns were designed and jointed. Resonant frequencies and vibration characteristics of vibrators and horns were analyzed by ANSYS(finite element analysis computer program), and the displacements of tips of the horns were measured. As results, when the numbers of the stacked ceramics were increased, the displacements of the tips were increased and the driving voltages were decreased. Step l horn (BLT-St1) showed maximum displacement of 36.92 $\mu\textrm{m}$ at 36.7 ㎑ with 45 V$\sub$rms/ and 0.11 A. The displacement amplification ratio was about 5.2. But, the stress of step l horn was concentrated on intersection, where two diameters meet. To lessen the stress, step3 shaped hem is recommended.

Maneuvering Performances of a Ship with Flap Rudder (Flap 타를 채택한 선박의 조종성능 특성)

  • Lee Ho-Young;Shin Sang-Sung;Park Hong-Shik;Park Jong-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.70-74
    • /
    • 2001
  • In this paper, we studied the maneuvering performances of a ship with flapped rudder. PMM tests were carried out for a ship model with horn type rudder or flapped rudder. The Abkowitz's model was used as a basic mathematical model to simulate the maneuvering motions. The maneuvering motions of a ship with flapped rudder were compared with those of a ship with horn-type rudder. As a result, it was found that the turning ability of a ship with flapped rudder was remarkably improved.

  • PDF

Performance analysis of a horn-type rudder implementing the Coanda effect

  • Seo, Dae-Won;Oh, Jungkeun;Jang, Jinho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • The Coanda effect is the phenomenon of a fluid jet to stay attached to a curved surface; when a jet stream is applied tangentially to a convex surface, lift force is generated by increase in the circulation. The Coanda effect has great potential to be applied practically applied to marine hydrodynamics where various lifting surfaces are being widely used to control the behavior of ships and offshore structures. In the present study, Numerical simulations and corresponding experiments were performed to ascertain the applicability of the Coanda effect to a horn-type rudder. It was found that the Coanda jet increases the lift coefficient of the rudder by as much as 52% at a jet momentum coefficient of 0.1 and rudder angle of $10^{\circ}$.