• Title/Summary/Keyword: Horizontal gradient

Search Result 165, Processing Time 0.024 seconds

Development of a Quality Check Algorithm for the WISE Pulsed Doppler Wind Lidar (WISE 펄스 도플러 윈드라이다 품질관리 알고리즘 개발)

  • Park, Moon-Soo;Choi, Min-Hyeok
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.461-471
    • /
    • 2016
  • A quality check algorithm for the Weather Information Service Engine pulsed Doppler wind lidar is developed from a view point of spatial and temporal consistencies of observed wind speed. Threshold values for quality check are determined by statistical analysis on the standard deviation of 3-component of wind speed obtained by a wind lidar, and the vertical gradient of horizontal wind speed obtained by a radiosonde system. The algorithm includes carrier-to-noise ratio (CNR) check, data availability check, and vertical gradient of horizontal wind speed check. That is, data sets whose CNR is less than -29 dB, data availability is less than 90%, or vertical gradient of horizontal wind speed is less than $-0.028s^{-1}$ or larger than $0.032s^{-1}$ are classified as 'doubtful', and flagged. The developed quality check algorithm is applied to data obtained at Bucheon station for the period from 1 to 30 September 2015. It is found that the number of 'doubtful' data shows maxima around 2000 m high, but the ratio of 'doubtful' to height-total data increases with increasing height due to atmospheric boundary height, cloud, or rainfall, etc. It is also found that the quality check by data availability is more effective than those by carrier to noise ratio or vertical gradient of horizontal wind speed to remove an erroneous noise data.

A Basic Study for the Propagation Characteristics Due to the Horizontal Water Temperature Variations in the Sea (해양에서의 수평적 수온변화가 음파전달에 미치는 영향에 대한 기초적 연구)

  • Ha, Kang-Lyeol;Kim, Moo-Joon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.395-401
    • /
    • 1996
  • In this paper, the propagation characteristics due to the horizontal water temperature variations in the sea such as thermal fronts is analyzed by the ray theory. Two models for the temperature anomaly layer are chosen. One is a plane type and the other is a cylindrical type. In the plane type, the temperature increases linearly from a isothermal region to 5km with the gradient of about $2^{\circ}C.$/km, and decreases with the same gradient in next 5km. In the cylindrical type, water temperature increases only with the same gradient from a half cylindrical thermal boundary surface. The result showed that the gradient of acoustic rays decreases in the temperature increasing region and vice versa in temperature decreasing region. And, the transmission loss due to the temperature variation was less than O.2dB in the plane type model as well as in the cylindrical one.

  • PDF

A Study on the Characteristics of Discharge Capacity for Horizontal Drains (수평배수재의 통수특성에 관한 연구)

  • 박정용;박정순;장연수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.557-564
    • /
    • 2002
  • Discharge capacity test is carried out to find out influencing factors on discharge capacity of prefabricated horizontal drains to improve weak dredged clay. Four representative prefabricated horizontal drains are selected based on the size of drain as well as the shape of core. Test is carried out for 10 days at each three level of confining pressure for all drains. Effects of elapsed time, confining pressure, hydraulic gradient and strength of filter and core on discharge capacities are examined. It is found that discharge capacity of drain, which has deformable core or has a possibility of squeezing filter into core, decreases more with time due to its low strength. As confining pressure increases, discharge capacity decreases due to the squeezing of filter into core.

  • PDF

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.

Two-phase Pressure Drop in a Horizontal Rectangular Microchannel (수평 사각 마이크로채널 내에서의 2상 유동 압력강하)

  • Huh, Cheol;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1035-1042
    • /
    • 2006
  • An experimental investigation was performed to study two-phase pressure drop of deionized water in a microchannel. Measurement and evaluation of two-phase frictional pressure gradient were carried out using a single horizontal rectangular microchanne1 having a hydraulic diameter of $100{\mu}m$. Tests were performed for mass fluxes of 90, 169, and 267 $kg/m^2$s and heat fluxes of 200-700 $kW/m^2$. Test results showed that the measured two-phase frictional pressure gradient increased with the mass flux and vapor quality. Most macro-channel correlations of two-phase frictional pressure gradient did not provide reliable predictions except under certain limited conditions.

A Study on the Characteristics of Unsaturated Discharge Capacity of Horizontal Drains (수평배수재의 불포화 통수특성 연구)

  • 장연수;박정순;박정용
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2003
  • To evaluate the effect of trapped air bubbles in horizontal drains on discharge capacity, unsaturated discharge capacity tests are carried out for four types of drains selected according to the size of section as well as the shape of core. Unsaturated discharge capacities with the elapse of time, the increase of confining pressures, and hydraulic gradients are examined and are compared with saturated discharge capacities. It is found that the unsaturated discharge capacities at a hydraulic gradient of 0.01 decreased by 17%~80% due to the remained air bubbles in the drains compared with the saturated discharge capacities. It is caused by the fact that the horizontal direction of water flow is not consistent with the direction of movement of floating air bubbles in case of horizontal drains. Especially, far the drain with filament shaped core, discharge capacities decreased significantly due to the difficulty in removing air bubbles.

Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan Estuary in the Summer of 201 (2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화)

  • Park, Hyo-Bong;Kang, Kiryong;Lee, Guan-Hong;Shin, Hyun-Jung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2012
  • The short-term variation of salinity and temperature in a dyked estuarine environment is mainly controlled by the freshwater discharge from the dyke. We examined the distribution of salinity and temperature by the freshwater discharge in the Yeongsan River estuary using the CTD data obtained from 8 stations through three surveys in June (weak discharge) and August (intensive discharge), 2010. During the weak discharge in June, the surface salinity showed 30-32.5 psu and its horizontal gradient was relatively high around Goha-do (0.25~0.32 psu/km). On the other hand, the salinity of the bottom layer was almost constant in the range of 33 psu. Water temperature ranged $19{\sim}21^{\circ}C$ and displayed higher gradient in north-south direction than the gradient of east-west direction. During the intensive freshwater discharge on August 12, the salinity dropped to 9~26 psu. The maximum horizontal gradient of surface salinity reached 3.8 psu/km in the north of Goha-do where the strong salinity front was formed, and the horizontal salinity gradient of bottom layer was 0.28 psu/km. The horizontal gradient of water temperature was $-0.45^{\circ}C/km$ in the surface and $-0.12^{\circ}C/km$ in the bottom with high surface temperature near the dyke and decreasing gradually to the river mouth. After 3 days of the intensive discharge ($3^{rd}$ survey), the surface salinity increased to 22~26 psu. However, there still existed relatively high horizontal gradient around Goha-do. In the mean time, the bottom salinity decreased to 26.5~27.5 psu, but its gradient was not big as much as the surface gradient. According to time series of CTD profile near the dyke, the discharged fresh water jetted down temporarily and then recovered gradually with the recovering speed of 0.4 m/hour for the discharge case of $13{\times}10^6$ ton. Due to the combined effects of freshwater discharge and surface heating during the summer of 2010, the Yeongsan estuary, in general, underwent intensified vertical stratification, which in turn caused the inhibition of vertical mixing, especially inside area of estuary. Based on the spatial distribution of salinity and temperature, the Yeongsan estuary can be divided into three regions: the Goha-do area with strong horizontal gradient of salinity and temperature, inner estuary from Goha-do to the dyke with low salinity, and outer estuary from Goha-do to the coasts with relatively high salinity.

Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval (필터간격을 고려한 농업용저수지 제체의 침투특성)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.

The Closed-form Expressions of Gravity, Magnetic, Gravity Gradient Tensor, and Magnetic Gradient Tensor Due to a Rectangular Prism (직육면체 프리즘에 의한 중력, 자력, 중력 변화율 텐서 및 자력 변화율 텐서의 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • The closed-form expressions of gravity, magnetic, gravity gradient tensor, and magnetic gradient tensor due to a rectangular prism are derived. The vertical gravity is derived via triple integration of a rectangular prism in Cartesian coordinates, and the two horizontal components of vector gravity are then derived via cycle permutation of the axis variables of vertical gravity through the axial symmetry of the rectangular prism. The gravity gradient tensor is obtained by differentiating the vector gravity with respect to each coordinate. Using Poisson's relation, a vector magnetic field with constant magnetic direction can be obtained from the gravity gradient tensor. Finally, the magnetic gradient tensor is derived by differentiating the vector magnetic with respect to appropriate coordinates.

Characteristics of Potential Gradient for the Type of Structure Grounding Electrode (구조체 접지전극의 유형에 따른 전위경도 특성)

  • Gil Hyung-Jun;Choi Chun-Seog;Kim Hyang-Kon;Lee Bok-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.371-377
    • /
    • 2005
  • This paper Presents the Potential gradient characteristics of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The potential gradient has been measured and analyzed for types of structure using the hemispherical grounding simulation system in real time. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage In concrete attached to structure, the potential distribution of ground surface appeared differently.