• Title/Summary/Keyword: Horizontal array

Search Result 182, Processing Time 0.035 seconds

Effective Demosaicking Algorithm for CFA Images using Directional Interpolation and Nonlocal Means Filtering (방향성 기반 보간법과 비지역 평균 필터링에 의한 효과적인 CFA 영상 디모자이킹 알고리즘)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.110-116
    • /
    • 2017
  • This paper presents an effective demosaicking algorithm for color filter array (CFA) images acquired from single-sensor devices based on directional interpolation and nonlocal properties of the image. We interpolate the G channel considering diagonal directions as well as horizontal and vertical directions, using a small number of pixels to reflect local properties of the image. Then, we overcome image degradations, such as zipper effects near edges and false colors, by applying nonlocal means (NLM) filtering to the interpolated pixels. R and B channels are reproduced by using directional interpolation with information of the reconstructed G channel and NLM filtering. Experimental results for various McMaster images with high saturation and color changes show that the proposed algorithm accomplishes high PSNR compared with conventional methods. Moreover, the proposed method demonstrates better subjective quality compared with existing methods in terms of reduction of quality degradation, like false colors, and preservation of the image structures, such as edges and textures.

An Interference Coordination Technique Utilizing Sub-Arrays and Its Performance in Cellular Systems (부 어레이 빔포밍을 활용하는 간섭 제어 기법 및 셀룰러 시스템에서의 성능 평가)

  • Kang, Hosik;Lee, Donghyun;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.653-663
    • /
    • 2014
  • To cope with an increasing amount of data traffic, research efforts are being made to maximize the data rate by reducing the interference between the transmission nodes. This paper also focuses on interference control schemes utilizing antenna sub-array beam-forming. The first scheme relies on horizontal beam rotation which utilizes three types of narrow beam patterns. Different beam patterns are applied to transmit signals in rotating fashion to control the interference. The second scheme is based on user-specific sub-array beamforming, which uses the precoding matrix based on users' location and controls the amount of interference in the multi-user environment. The performance of the proposed schemes is evaluated using the computer simulation to demonstrate the performance enhancement.

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

Characteristics of Ground-Penetrating Radar (GPR) Radargrams with Variable Antenna Orientation

  • Yoon Hyung Lee;Seung-Sep Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Ground penetrating radar (GPR) survey is a geophysical method that utilizes electromagnetic waves reflecting from a boundary where the electromagnetic property changes. As the frequency of the antenna is about 25 MHz ~ 1 GHz, it is effective to acquire high resolution images of underground pipe, artificial structure, underground cavity, and underground structure. In this study, we analyzed the change of signals reflected from the same underground objects according to the arrangement of transceiver antennas used in ground penetrating radar survey. The antenna used in the experiment was 200 MHz, and the survey was performed in the vertical direction across the sewer and the parallel direction along the sewer to the sewer buried under the road, respectively. A total of five antenna array methods were applied to the survey. The most used arrangement is when the transmitting and receiving antennas are all perpendicular to the survey line (PR-BD). The PR-BD arrangement is effective when the object underground is a horizontal reflector with an angle of less than 30°, such as the sewer under investigation. In this case study, it was confirmed that the transmitter and receiver antennas perpendicular to the survey line (PR-BD) are the most effective way to show the underground structure. In addition, in the case where the transmitting and receiving antennas are orthogonal to each other (XPOL), no specific reflected wave was observed in both experiments measured across or parallel to the sewer. Therefore, in the case of detecting undiscovered objects in the underground, the PR-BD array method in which the transmitting and receiving antennas are aligned in the direction perpendicular to the survey line taken as a reference and the XPOL method in which the transmitting and receiving antennas are orthogonal to each other are all used, it can be effective to apply both of the above arrangements after setting the direction to 45° and 135°.

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

A Moving Target Tracking Algorithmfor a Mobile Robot Based on a 2D Image of a Line Light (직선광선의 2D 영상을 이용한 이동로봇의 이동물체 추적 알고리즘)

  • Rim, Ho;Hahn, Hernsoo;Hong, Min-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.11-21
    • /
    • 2000
  • This paper proposes a new algorithm for a mobile robot that detects and tracks a moving target, keeping it in the view range of the robot. The sensor system consists of a camera and a line light source. The camera system is placed so that the line light projected into the ground from the light source forms its image along the horizontal center line of the CCD array of the camera. The deformation of the line image from the horizontal center line contains the information on existence of a moving object, its velocity, and position. Since the proposed algorithm reduces the region of the image to be searched, it reduces the computational complexity significantly comparing to the conventional image processing algorithms. The performance of the proposed algorithm has been tested by implementing on a mobile robot.

  • PDF

Effectiveness of the Electrode Arrays for Delineating 2-D Subsurface Structure (2차원 지하구조 규명을 위한 전극배열의 효율성)

  • Yoon, Jong-Ryeol;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.345-355
    • /
    • 1996
  • The effectiveness of various electrode configurations in horizontal mappings and 1-D inversions of vertical sounding data for delineating 2-D structures was studied. Apparent resistivity values of three point, dipole-dipole, Wenner, and Schlumberger mappings were simulated for such structures as vertical dyke, tabular prism, buried vertical fault, ramp and complex structure by finite difference method (FDM) and they were compared with each other. Also 2-D cross sections for three structures obtained by interpolation of 1-D inverted sounding data in terms of three layers were compared for Schlumberger and Wenner arrays. On these cross sections, horizontal and vertical resistivity interfaces of the 2-D structures are revealed relatively clearly. Apparent resistivity curves of Schlumberger mapping show vertical resistivity discontinuities very well. On the whole, Schlumberger array is superior to the other arrays in electric sounding as well as mapping. This study clearly indicates that interpretations of 2-D structures based on 1-D inversion are possible.

  • PDF

Developmentof Dual Polarized Base station Antenna with Electrical Down tilting (전기적 다운 틸팅 기능을 갖는 이중 편파 기지국 안테나 개발)

  • Lee, Chang-Eun;Yun, Jong-Sup;Moon, Young-Chan;Hur, Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.81-88
    • /
    • 2004
  • In case of mechanical down tilting, a horizontal pattern is distorted and beam width widens whenincreasing tilt angle, which causes an expansion of hand off region and burden base station equipment. In contrast, electrical down tilting has advantage that horizontal HPBW is kept constant with down tilting. In this paper, based on a phased array technology, dual polarized base station antenna with electrical down tilting was developed at 800MHz band. The antenna has down tilting range of 0$^{\circ}$ to 14$^{\circ}$, and 15㏈i gain. We use stacked microstrip patch as a radiated element and apply balanced feed technique to improve isolation between ports and discrimination of cross polarization. The effect of electrical down tilting was verified by field test.

Non-uniform Linear Microphone Array Based Source Separation for Conversion from Channel-based to Object-based Audio Content (채널 기반에서 객체 기반의 오디오 콘텐츠로의 변환을 위한 비균등 선형 마이크로폰 어레이 기반의 음원분리 방법)

  • Chun, Chan Jun;Kim, Hong Kook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.169-179
    • /
    • 2016
  • Recently, MPEG-H has been standardizing for a multimedia coder in UHDTV (Ultra-High-Definition TV). Thus, the demand for not only channel-based audio contents but also object-based audio contents is more increasing, which results in developing a new technique of converting channel-based audio contents to object-based ones. In this paper, a non-uniform linear microphone array based source separation method is proposed for realizing such conversion. The proposed method first analyzes the arrival time differences of input audio sources to each of the microphones, and the spectral magnitudes of each sound source are estimated at the horizontal directions based on the analyzed time differences. In order to demonstrate the effectiveness of the proposed method, objective performance measures of the proposed method are compared with those of conventional methods such as an MVDR (Minimum Variance Distortionless Response) beamformer and an ICA (Independent Component Analysis) method. As a result, it is shown that the proposed separation method has better separation performance than the conventional separation methods.