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Effectiveness of the Electrode Arrays for
Delineating 2-D Subsurface Structure

Jong-Ryeol Yoon* and Kiehwa Lee*

ABSTRACT : The effectiveness of various electrode configurations in horizontal mappings and 1-D inversions of vert-
ical sounding data for delincating 2-D structures was studied. Apparent resistivity values of three point, dipole-dipole,
Wenner, and Schlumberger mappings were simulated for such structures as vertical dyke, tabular prism, buried vertical
fault, ramp and complex structure by finite difference method (FDM) and they were compared with each other. Also 2-
D cross sections for three structures obtained by interpolation of 1-D inverted sounding data in terms of three layers
were compared for Schlumberger and Wenner arrays. On these cross sections, horizontal and vertical resistivity in-
terfaces of the 2-D structures are revealed relatively clearly. Apparent resistivity curves of Schlumberger mapping show
vertical resistivity discontinuities very well. On the whole, Schlumberger array is superior to the other arrays in electric
sounding as well as mapping. This study clearly indicates that interpretations of 2-D structures based on 1-D inversion

are possible.

INTRODUCTION

Electric exploration data are often interpreted by
one-dimensional (1-D) layered model. A number of
studies on interpretation of electric sounding data
using layered model have been made (Mooney et al.,
1966; Inman, 1975; Zohdy, 1989). However, in
many cases, 1-D interpretation may be very difficult
to incorporate with the 2-D or 3-D subsurface
structure. Since the late 1970s, interpretation
techniques based on 2-D model have been developed
for dipole-dipole array surveys (Dey and Morrison,
1979; Smith and Vozoff, 1984; Tripp et al., 1984;
Sasaki, 1989). However, 2-D inversions require
much computing time and large computer memory.
Therefore, there arise needs to study to what extent 1-
D interpretation can elucidate the real 2-D subsurface
structure (Beard et al, 1991) and what electrode
configurations are more effective in mapping and
sounding the 2-D structure.

In this study, five simple 2-D subsurface structures
were simulated. Each 2-D subsurface structure was
divided into 200X 15 blocks and at every nodal
point electric potentials were calculated using finite
difference method described by Dey and Morrison
(1979). These calculated potentials were assumed as
observed data in sounding and mapping.
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Twenty five soundings and forty mappings were
calculated at various nodal points over each structure.
Soundings were interpreted by iterative least square
inversion approach (Inman, 1975; Lines and Treitel,
1984; Constable et al, 1987) assuming "a three
layered earth. To calculate kernel in inversion
procedure, ZHANKS FORTRAN subroutine
(Anderson, 1979) was used. The 2-D cross-sections
for Wenner and Schlumberger arrays were obtained
from interpolation of these 1-D inverted data and
compared with each other. Also, apparent resistivity
curves for three point, dipole-dipole, Wenner, and
Schlumberger mappings were compared. All the
numerical calculations were performed by Seoul
National University Alliant FX/2812 parallel
supercomputer. The flow chart of data processing of
this study is shown in Fig. 1.

FINITE DIFFERENCE METHOD

In 2-D resistivity modeling, the resistivity depends
on two coordinates (x and z). But, as the current
source is point, the electric potential will also depend
on the third coordinate, y, i.., strike direction. In
order to remove the potential's dependence on the
strike direction, Fourier cosine transform may be
applied since the potential is an even function of y.
After applying the transform, discretization of the
subsurface into the mesh of rectangular elements is
performed. To obtain the potential at cach node,
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Fig. 1. Flow chart of data processing.

transformed differential equation is expanded to
finite difference equation.

Transformed potential and normal component of
the current must be continuous across each interface
of the different boundary. In this study, the mixed
boundary condition proposed by Dey and Morrison
(1979) was imposed. This condition produces better
numerical solutions than the classical ones (Dirichlet
or Neumann). The set of finite difference equations
satisfying the mixed boundary condition can be
applied to all nodes and these equations can be
written in matrix form or symbolically, as

Co=S¢

where ¢ is the transformed potential vector and C is
the capacitance matrix. § is the source vector and is
all zero except source locations. Capacitance matrix
is positive definite (Varga, 1962) and remains
unaltered for different and multiple source locations.
Hence for the different source locations of the same
model, only one calculation is needed. In this study,
matrix equation was solved by Gauss elimination
algorithm for banded symmetric matrix.

The inverse cosine transform of the potential was
performed by numerical integration using trapezoidal
rule. Then, the electric potential, V (x, y, z), can be
obtained from the set of (x, K, z) for several
optimal values wave number in y direction, K,. But
singularity occurs in the solution of any elliptic

Table 1. Values of wave numbers in y direction (K,).
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Fig. 2. Test of FDM solution for Schlumberger sounding.

partial differential equation for which the forcing
function is not smooth (Lowry et al., 1989). Hence,
the potential in the (x, K,, z) domain has singularity
at zero K, value and numerical integration causes
some errors. The number of K, values also
influences errors of inverse transform. Since the
large number of K, values increases computing time,
ten inequally spaced optimal K, values were used
(Table 1) in this study.

In order to estimate the accuracy of finite
difference method described above, a two layer
model was simulated. The resistivity of the top layer
of thickness 40m was assumed to be 500 £m and
that of the bottom layer to be 10m. It is assumed
that a Schlumberger sounding was performed over
the top layer. The results of Schlumberger sounding
is shown in Fig. 2. The theoretical response (Telford,
1976) for the two layer model is shown by the curve
with solid line and FDM solution with circles. The
numerical results differ from the theoretical solution
within 6%.

ITERATIVE LEAST SQUARES INVERSION

The purpose of inversion is extracting the model
parameters from an attempted fit of the model
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response to the observed data. Accordingly, model
response is calculated and compared with the
observation, and the model parameters are then
modified in a way which will better fit the
observation. If the model response is a linear
function of the model parameters, the model
response can be represented by the first-order
Taylor expansion. Then Jacobian matrix which
consists of partial derivatives of the model
response with each model parameter has constant
elements. Hence, only one modification of model
parameters is needed.

But the problem of the electric sounding over a
layered subsurface is nonlinear in the unknown
parameters, such as the resistivity and thickness of
each layer. In the case of nonlinear problem, model
parameters are updated iteratively until the obtained
error of each step is not less than the error of
previous step. Finally, we can get the model
parameters having least squares error.
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In- electric sounding problem, since the layer
resistivities and thicknesses must have positive
values, logarithms of those model parameters are
taken (Vozoff and Jupp, 1975). Furthermore, in
order to speed the convergence of model parameter
solutions, scaling of Jacobian matrix is needed

113th node

1000 ohm-m

Fig. 3. Vertical dyke model.
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Fig. 4. Apparent resistivity curves of electric mappings with different potential electrode separations for vertical dyke model;
() Three point array (b) Dipole-dipole array (c) Wenner array (d) Schlumberger array.
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(Lines and Treitel, 1984). The element d; of
scaling matrix D which is diagonal matrix, is equal
to the root mean sum (r.m.s.) of square of the
elements in the i-th column of the unscaled
Jacobian matrix. The resulting solution vector must
then be rescaled.

In this study, matrix inversion was performed by
use of singular value decomposition (Press et al.,
1986) to avoid singularity in the stage of updating
model parameters.

2-D MODEL SIMULATION

In this study, five 2-D subsurface models were
examined; (1) vertical dyke, (2) buried vertical fault,
(3) tabular prism, (4) ramp, and (5) complex
structure  which includes vertical fault and three
layers. For each model, results of electric mappings
performed at interval of one unit at forty points for
Schlumberger, Wenner, three point, and dipole-
dipole arrays were compared with each other.

In the case of electric sounding, Schlumberger and
Wenner configurations which have been most
commonly used were investigated. Electric soundings
were performed at twenty two or twenty three nodal
points at interval of one unit. The inverted values of
sounding data in terms of three layer were
interpolated in 25X 25 grids by minimum curvature
method. These interpolated data were expressed on 2-
D cross section. One block of each cross section
corresponds to one unit of the simulated model in

89 99 103

113th node 89

both x and z direction.
Vertical Dyke

The vertical dyke shown in Fig. 3 extends from
surface downward to infinity. The width of dyke is 4
units and the resistivity of the dyke is 100 ohm-m,
while that of the surrounding rock is 1000 ohm-m.
Since this model is symmetric, the potential was
calculated using the principle of reciprocity, which
results in saving computation time.

Fig. 4 shows the apparent resistivity curves of four
different electrode arrays with various potential
electrode separations. Since the three point array is
not symmetric, its curve is not symmetric either. But
the other apparent resistivity curves show the
symmetry. For dipole-dipole array, the current
clectrodes are not located symmetrically about the
potential eclectrodes, and its curve spreads as
potential electrode separation increases.

All the apparent resistivity curves show sharp peaks
near the resistivity boundary. These peaks are due to
image charge. Since this image charge amplifies the
potential difference, the apparent resistivity becomes
large near the resistivity boundary. Schlumberger and
Wenner mappings represent the dyke model more
clearly than the other arrays. But Schlumberger
mapping is superior to the Wenner mapping. Fig. 4
also shows that the closer the potential electrode
separation is, the more clearly the vertical resistivity
boundary is represented.
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Fig. 5. 2-D cross sections for vertical dyke model; (a) Schlumberger array (b) Wenner array.
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The 2-D cross sections of Schlumberger and
Wenner arrays are shown in Fig. 5. The 2-D cross
section of Schlumberger array shows the infinite
vertical dyke model clearly. But Wenner array does
not represent the vertical resistivity boundary clearly.
Because the potential electrode separation increases
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Fig. 6. Tabular prism model.
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with current electrode separation in Wenner sounding,
the apparent resistivity is more affected by the
surrounding medium than in Schlumberger sounding.
Thus Wenner soundings represent poorly the vertical
dyke model having relatively small width in
comparison to depth extent. It is obvious that
Schlumberger array is also superior to Wenner array
in case of electric sounding,

Tabular Prism

The simulated tabular prism model is shown in
Fig. 6. The 100 ohm-m prism is buried 3 units deep
in a 1000 ohm-m half-space. The prism is 2 units
thick and 10 units wide. Since this model is
symmetric like the vertical dyke model, the potential
was calculated using the principle of reciprocity.

Fig. 7 shows the results of the electric mappings.
In case of the three point and Wenner mappings, the
apparent resistivity curves for small separations of
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Fig. 7. Apparent resistivity curves of electric mappings with' different potential electrode separations for tabular prism
model; (a) Three point array (b) Dipole-dipole array (c) Wenner array (d) Schlumberger array.
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Fig. 8. 2-D cross sections for tabular prism model; (a) Schlumberger array (b) Wenner array.
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Fig. 9. Buried vertical fault model.

potential electrodes (1~2 units) are nearly flat
because the current electrode distance is not large
enough to represent the tabular prism buried 3 units
deep. All the mapping curves do not show the sharp
peaks not like the case of the vertical dyke, because
the resistivity boundary is not exposed to the surface.
‘For this model, Schlumberger and Wenner arrays are
superior to the others.

The 2-D geoelectric sections are shown in Fig. 8.
Schlumberger sounding shows the prism clearly. But
above the top surface of the prism, a relatively low
resistivity zone appears. This low resistivity zone
results from the lack of shallow depth information.
Usually, the separation of current electrode is very
large compared to that of potential electrode in
Schlumberger array. Since the potential electrode
separation is 1 unit and the current electrode

separation must increase from 20 units in this study,
and the information of the shallow depth is lacking.

If the block is divided more finely, such low
resistivity zone may be removed. However, since the
computing time increases exponentially as the
number of blocks increases arithmetically, it is
important to determine the proper number of blocks
for each model. It is also noted that the long plug
appears below the prism. Wenner sounding does not
show the resistivity boundary clearly.

Buried Vertical Fault

The buried vertical fault model is shown in Fig. 9.
The vertical edge of the fault block is located at the
101th node and is assumed to extend downward
infinitely. The horizontal interface is 2 units deep.
The resistivity of the fault block is 100 ohm-m and
that of the surrounding medium is 1000 ohm-m.
Since this model is not symmetric, the potential was
calculated at all nodal points.

Fig. 10 shows that Schlumberger mapping
represents the buried vertical fault clearly. The other
arrays do not show the vertical boundary clearly. In
Schlum- berger mapping, the potential -electrode
separation seems to matter little for this model.

In Fig. 11, it is shown that Wenner sounding fails
to represent the vertical fault boundary as clearly as
Schlumberger sounding. As mentioned before,
Schlumberger sounding does not show the horizontal
fault boundary because of the limited number of
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Fig. 10. Apparent resistivity curves of electric mappings with different potential electrode separatigns for buried vertical
fault model; (2) Three point array (b) Dipole-dipole array (c) Wenner array (d) Schlumberger array.
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dividing blocks. On the other hand, Wenner
sounding shows the horizontal boundary relatively
well. However, if we increase the number of divided
blocks, Schlumberger sounding may show the
shallow horizontal boundary as clearly as the vertical
boundary.
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Fig. 12. Ramp model.
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Ramp

Fig. 12 shows the ramp model. The ramp angle is
45 degrees to the surface and the vertical thickness is
8 units. The corner of the ramp is located at the 109
th node. The rock above the ramp has the resistivity
of 100 ohm-m while that of the surrounding rock is
1000 ohm-m.

In Fig. 13, we can see that Schlumberger mapping
shows a very large apparent resistivity at the corner
of the ramp. It is because that the resistivity
discontinuity is exposed to the surface like the
vertical dyke model. All the other electric mappings
fail to represent the ramp structure as clearly as
Schiumberger mapping.

The center of the cross section in Fig. 14 is at the
109th node. It is shown that Wenner sounding better
represents the ramp structure than Schlumberger
sounding. It seems that Wenner sounding is more
sensitive to the variation of the resistivity with depth
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Fig. 13. Apparent resistivity curves of electric mappings with different potential electrode separations for ramp model; (a)
Three point array (b) Dipole-dipole array (c) Wenner array (d) Schlumberger array.



Effectiveness of the Electrode Arrays for Delineating 2-D Subsurface Structure 353

97 109

8 units

(a)

12ith node 97

109 12ith node

100

500

- 1000

(ohm~m)

®)

Fig. 14. 2-D cross sections for ramp model; (a) Schlumberger array (b) Wenner array.
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Fig. 15. Complex model.

than Schlumberger sounding. Schlumberger sounding
fails to represent the ramp structure.

Complex Structure

The complex model shown in Fig. 15 consists of a
vertical fault and three layers on one side of it. The
vertical edge is located at the 101 th node.

The mapping curves for this structure in Fig. 16 are
similar to those for the vertical fault. Schlumberger
mapping shows clearly the vertical boundary as in the
case of the vertical fault. In the case of soundings (Fig.
17), Schlumberger array shows the three layer structure
while Wenner array does not.

CONCLUSIONS

In geoelectric studies 2-D or 3-D inversions of the
electric sounding data will yield a better subsurface
resistivity structure than 1-D inversion. However,
2-D or 3-D inversions need more computing time
and larger memory size than 1-D inversions. This
study showed the 2-D geoelectric sections based on
1-D interpretations are useful in delineating simple 2-
D subsurface structures.

The effectiveness of various electrode configurations
such as Wenner, Schlumberger, three point and dipole-
dipole arrays in delineating 2-D structures are
examined. Among them, Schlumberger array proved to
be superior to the other arrays in both 1-D electric
sounding and mapping. Schlumberger array shows the
vertical resistivity boundary very clearly, but it tends to
exaggerate the resistivity near the vertical boundary.
On the contrary, Wenner array fails to reveal the
vertical interface clearly. The three point and dipole-
dipole array shift the vertical boundary away as the
potential electrode separation increases. Thus they are
not suitable for 2-D interpretations. Analogous studies
can be extended to 3-D model without particular
difficulty.
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