• Title/Summary/Keyword: Horizontal Joint

Search Result 382, Processing Time 0.03 seconds

Distribution and Statistical Analysis of Discontinuities in Deep Drillcore (심부시추코어를 활용한 불연속면의 분포 특성 및 통계학적 해석)

  • Junghae Choi;Youjin Jung;Dae-Sung Cheon
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.415-427
    • /
    • 2024
  • This study undertook a quantitative analysis of the distribution of fractures in deep drillcore from a Precambrian metamorphic complex on the north face of Hongcheon-gun, Gangwon-do, Korea. The fracture distribution with depth, inclination of fractures, and grain size in the fracture zone were measured and statistical techniques applied to derive probability distributions of fracture intervals. Analysis of the inclination angles of fracture planes showed that sub-horizontal fractures are dominant, and fracture spacing is mainly ≤0.5 m, with a median of 0.09 m, first quartile of 0.04 m, and third quartile of 0.18 m, indicating very dense fracture development. Statistical analysis of joint properties was undertaken with fitting using five probability density functions (double Weibull, exponential, generalized logistic, gamma, and lognormal). The lognormal distribution (sum of squared errors, SSE = 2.80) yielded the best fit based on the sum of residual squares. Quantitative characterization of the fracture characteristics of deep bedrock in the Hongcheon area is important for various geotechnical applications such as groundwater flow modeling, slope stability assessment, and underground structure design. In future studies, it will be necessary to combine in situ stress measurements and geophysical surveys to determine the relationship between fracture development and the local stress field.

Dyke Swarms and Fracture System and their Relative Chronology and Tectonic Implications in the Jukbyeon-Bugu Area, Uljin, East Korea (한반도 동부 울진 죽변-부구 지역 암맥군과 단열계의 상대연령과 지구조적 의미)

  • Kim, Chang-Min;Kim, Jong-Sun;Song, Cheol-Woo;Son, Moon;Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.173-189
    • /
    • 2011
  • Basic to acidic dykes and systematic joints are observed pervasively in the Jukbyeon-Bugu area, Uljin, east Korea. In order to classify the dykes and joints and to determine the relative chronology, their geometries, kinematics, and cross-cutting relationships, and the petrography and geochemistry of dykes are synthetically analyzed. Based on the orientations and cross-cutting relationships of 144 dykes (137 basic and 7 acidic dykes) and 370 systematic joints, three basic dike swarms (M-10, M-80, and M-100), one acidic dyke group (AD), and four joint sets (J-10, J-40, J-80, and J-150) are classified. Some of the J-150 joints reactivated as dextral strike-slip fault are recognized in the field and named as F-340R. According to petrographic, geochemical, and occurrence features in the field, M-80 and M-100 dykes have originated from a co-magma and intruded under the same stress field, even though they have intruded through different passages, preexisting fractures and new fractures created by magmatic pressure, respectively. And the relative chronology of dyke swarms and joint sets in the study area is determined as follows : ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ . And the M-80 (M-100) and M-10 dyke swarms intruded under NNE-SSW and NW-SE trending horizontal minimum stress fields, respectively. According to a synthesis of the results of the previous and this studies, the M-80, M-10, and F-340R are interpreted to have been formed about 64-52 Ma, Eocene~Oligocene, and Miocene, respectively.

Examination of the Flick-Flack Salto Backward Stretched of Success and Fall Occurs on the Balance Beam (평균대 백핸드 수완 동작 성.패 시 실수요인 규명)

  • So, Jae-Moo;Kim, Yoon-Ji;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • The purpose of this study is to examine the causes of errors from EGR posture on the balance beam, which is bending flick-flack salto backward stretched national team players through kinematic analysis, and present training methods for them so as to provide scientifically useful information to coaches and athlete. Findings from this study are summarized below. The most important factors that affect the errors in boyd center position and speed change were the speed change of left and right body centers and the horizontal and vertical speed changes. The left and right acceleration changes were greater in failed posture than in successful posture. The horizontal and vertical accelerations in E3 and E5 were the key factors that affected the backward somersault and landing. The angular speed changes which varied between success and failure were notable in head and shoulder joints. In individual results. The section when the angular speeds of head and shoulder joint must be the greatest was E4. In this section, when the body is extending instantly in a bent posture, increasing the angular speeds of head, shoulder and hip joints can improve the duration of staying in the air and the rotation radius of a somersault.

Characteristics of Microcrack Orientations in Mesozoic Granites and Granitic Dyke Rocks from Seokmo-do, Ganghwa-gun (강화군 석모도 일대의 중생대 화강암류 및 화강암질 암맥류에서 발달하는 미세균열의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.129-143
    • /
    • 2007
  • We have studied orientational characteristics of microcracks in Mesozoic granites and granitic dyke rocks from Seokmo-do, Ganghwa-gun. Microcracks on horizontal surfaces of rock samples from 14 sites were investigated by image processing. Orientations of these microcracks compared with those of 18 sets of joints in Mesozoic granites from Seokmo-do. From the related chart, microcrack sets show strong preferred orientations which obviously are coincident with the direction of vertical common joints. It follows that the formation of macroscopic joints may be the results of further growth and step-wise jointing of pre-existing microcracks. Orientations of microcracks from this result also compared with those of vertical rift and grain planes for Jurassic and Cretaceous granite quarries in Korea. As shown in the distribution chart, the congruence of distribution pattern among microcracks and rift and grain planes suggests that similar microcrack systems probably occur regionally in Jurassic and Cretaceous granites from Korea. In particular, whole domain of the distribution chart was divided into 16 groups in terms of the phases of distribution of microcracks and planes. These microcrack sets in each domains construct complex composite microcrack systems which have formed progressively by different geologic processes and under varying conditions.

A Study about the Training Program for the Kolman Technique on the Horizontal Bars (체조 철봉 콜만 기술동작의 훈련프로그램 적용 및 향상도평가)

  • Back, Jin-Ho;Park, Jong-Chul;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • This study develops a technique training program to enhance the completion of Kolman, the high air flight technique, and applies it to two national athletes of the horizontal bar, one of the gymnastic events, for eight weeks. After that, their improvement was measured through 3D motion analysis to help them elevate their performance. The training program includes swing, hand release, twist, and bar hold, and its implementation produced the results stated below. They were made to practice the motion in the following way. After the hand-standing of giant swing which initiates the motion, they lift their body upward a little bit more. Next, they take their body down almost like a vertical descent and make a deep tap swing. Instead of doing the tap swing which widens the flection of hip and shoulder joints, while body revolution is more emphasized in particular, they release the bar as raising the centroid of their body sufficiently. During the flight, they try to narrow every joint in their body. As a result, the bar's elasticity becomes greatly increased, and since the backing rate of their body gets higher, the centripetal force of the swing is improved that they can release the bar in the higher position. In addition, because they can erect their body faster during the flight, they can perform comfortable twist and revolution in the air. They can also adjust the direction of the flight easily without too much concern for the proper timing of hand release as they rise. Thereby, they can not only maintain adequate distance from the bar for the bar hold but also ensure enough distance for body revolution and twist.

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing (유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가 )

  • Eun-Kyung Lee;Jin-Young Kim;Ho-Jin Baek;Kang-Seok Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

A study on asymmetric load on circular shaft due to engineering characteristics of discontinuous rock masses (불연속암반의 공학적 특성에 따른 원형수직구 편하중에 관한 연구)

  • Shin, Young-Wan;Moon, Kyoung-Sun;Joo, Kyoung-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • In the case of a circular shaft, it is expected that asymmetric loads should apply on the surface rather than symmetric loads due to geographical factors and the non-homogeneity of the jointed rock masses. In this study, discontinuous numerical analysis was carried in order to analyze the characteristics of asymmetric load distribution on the wall of the circular shaft due to anisotropy caused by heterogeneity of rock masses affected by the discontinuities like as a Joint. And it was also analyzed that the effect of the mechanical properties varied with the rock mass rating and horizontal stress with depth had influence in the asymmetric load on the wall of the shaft. In the case of considering the effect of the joint as variable, asymmetric load ratio $(R_p)$, which was defined as the ratio of the load subtracted minimum from maximum to minimum, was below 25% in the hard rock. As regarding the variation of the rock mass rating with depth as variable, the value of $R_p$ was below than 25% in the hard rock, and the value between 30% and 40% in the soft rock. On the other hand, the $R_p$ of fractures rock was between $45{\sim}50%$ which value was much higher than that in better rock mass rating.

  • PDF

Comparative Analysis of Track-Bridge Interaction of Sliding Slab Track and Rail Expansion Joint for Long-Span Railway Bridge (장경간 철도 교량에 적용된 슬라이딩 궤도와 레일신축이음장치의 궤도-교량 상호작용 비교)

  • Lee, Kyoung Chan;Jang, Seung Yup;Lee, Jungwhee;Choi, Hyun Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2016
  • Sliding slab track system, which consists of low friction sliding layer between track slab and bridge deck, is recently devised to reduce track-bridge interaction effect of continuously welded rail(CWR) without applying special devices such as rail expansion joint(REJ). In this study, a series of track-bridge interaction analyses of a long-span bridge with sliding slab track and REJ are performed respectively and the results are compared. The bridge model includes PSC box girder bridge with 9 continuous spans, and steel-concrete composite girder bridge with 2 continuous spans. The total length of the bridge model is 1,205m, and the maximum spacing between the two fixed supports is 825m. Analyses results showed that the sliding slab track system is highly effective on interaction reduction since lower rail additional axial stress is resulted than REJ application. Additionally, horizontal reaction forces in fixed supports were also reduced compared to the results of REJ application. However, higher slab axial forces were developed in the sliding slab track due to the temperature load. Therefore, track slab section of the sliding slab track system should be carefully designed against slab axial forces.

VVC Intra Triangular Partitioning Prediction for Screen Contents (스크린 콘텐츠를 위한 VVC 화면내 삼각형 분할 예측 방법)

  • Choe, Jaeryun;Gwon, Daehyeok;Han, Heeji;Lee, Hahyun;Kang, Jungwon;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.325-337
    • /
    • 2020
  • Versatile Video Coding (VVC) is a new video coding standard that is being developed by the Joint Video Experts Team of ISO/IEC/ITU-T and it has adopted various technologies including screen content coding tools. Screen contents have a feature that blocks are likely to have diagonal edges like character regions. If triangular partitioning coding is allowed for screen contents having such the feature, coding efficiency would increase. This paper proposes a intra prediction method using triangular partitioning prediction for screen content coding. Similar to the Triangular Prediction Mode of VVC that supports the triangular partitioning prediction, the proposed method derives two prediction blocks using Horizontal and Vertical modes and then it blends the predicted blocks applying masks with triangle shape to generate a final prediction block. The experimental results of the proposed method showed an average of 1.86%, 1.49%, and 1.55% coding efficiency in YUV, respectively, for VVC screen content test sequences.