DOI QR코드

DOI QR Code

Dyke Swarms and Fracture System and their Relative Chronology and Tectonic Implications in the Jukbyeon-Bugu Area, Uljin, East Korea

한반도 동부 울진 죽변-부구 지역 암맥군과 단열계의 상대연령과 지구조적 의미

  • Kim, Chang-Min (Department of Geological Sciences, Pusan National University) ;
  • Kim, Jong-Sun (Department of Geological Sciences, Pusan National University) ;
  • Song, Cheol-Woo (Department of Geological Sciences, Pusan National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University) ;
  • Choi, Sung-Ja (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 김창민 (부산대학교 지질환경과학과) ;
  • 김종선 (부산대학교 지질환경과학과) ;
  • 송철우 (부산대학교 지질환경과학과) ;
  • 손문 (부산대학교 지질환경과학과) ;
  • 최성자 (한국지질자원연구원 국토지질연구본부)
  • Received : 2011.10.03
  • Accepted : 2011.12.13
  • Published : 2011.12.31

Abstract

Basic to acidic dykes and systematic joints are observed pervasively in the Jukbyeon-Bugu area, Uljin, east Korea. In order to classify the dykes and joints and to determine the relative chronology, their geometries, kinematics, and cross-cutting relationships, and the petrography and geochemistry of dykes are synthetically analyzed. Based on the orientations and cross-cutting relationships of 144 dykes (137 basic and 7 acidic dykes) and 370 systematic joints, three basic dike swarms (M-10, M-80, and M-100), one acidic dyke group (AD), and four joint sets (J-10, J-40, J-80, and J-150) are classified. Some of the J-150 joints reactivated as dextral strike-slip fault are recognized in the field and named as F-340R. According to petrographic, geochemical, and occurrence features in the field, M-80 and M-100 dykes have originated from a co-magma and intruded under the same stress field, even though they have intruded through different passages, preexisting fractures and new fractures created by magmatic pressure, respectively. And the relative chronology of dyke swarms and joint sets in the study area is determined as follows : ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ . And the M-80 (M-100) and M-10 dyke swarms intruded under NNE-SSW and NW-SE trending horizontal minimum stress fields, respectively. According to a synthesis of the results of the previous and this studies, the M-80, M-10, and F-340R are interpreted to have been formed about 64-52 Ma, Eocene~Oligocene, and Miocene, respectively.

한반도 동부 울진 죽변-부구 지역 맥암과 단열의 기하와 운동학적 특성 그리고 횡절관계를 파악하고, 맥암의 암석기재와 지화학을 분석하였다. 총 144 암맥과 370개 절리의 방향성과 횡절관계를 이용하여 암맥은 세 개의 염기성 암맥군(M-10, M-80, M-100)과 한 개의 산성 암맥군(AD)으로 구분하고 절리는 네 개의 절리군(J-10, J-40, J-80, J-150)으로 분류하였다. 또한 J-150 절리들 중 최후기에 우수향으로 재활된 것들을 F-340R로 분류하였다. 암석기재, 지화학 그리고 산상을 종합하면, M-80과 M-100은 동일한 마그마와 응력장 하에서 각각 기존 단열과 마그마압력에 의해 새로이 만들어진 수압파쇄단열을 통로로 주입되었다. 또한 연구지역 암맥과 단열군은 ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ 순서로 형성되었다. 그리고 M-80과 M-100은 $N10^{\circ}E$ 그리고 M-10은 북서-남동의 최소수평응력장에서 지각이 신장된 결과이다. 한편 기존 절대연령 연구결과와 종합하여 분석하면, 이번 연구에서 확인된 암맥과 단열군들 중 M-80, M-10 그리고 F-340R은 64-52 Ma, 에오세~올리고세 그리고 마이오세에 각각 만들어진 것으로 해석된다.

Keywords

References

  1. 강지훈, 이덕선, 정원석, 나기창, 2006, 경상북도 울진군 북면 일대의 지질구조(요약문). 대한지질학회 추계학술 발표회 초록집, 123.
  2. 김인수, 1992, 새로운 동해의 성인모델과 양산단층계의 주향이동운동. 지질학회지, 28, 84-109.
  3. 김종선, 손문, 김진섭, 김정민, 2005, 한반도 남동부 제3기 암맥군과 화산암류의 40Ar/39Ar 연대. 암석학회지, 14, 93- 107.
  4. 김진섭, 손문, 김종선, 김인수, 2002, 한반도 남동부 제3기 암맥군과 지구조적 중요성. 암석학회지, 11, 169-181.
  5. 손문, 김인수, 1994, 울산군 강동면 제3기 정자분지의 지질 구조와 분지발달. 자원환경지질, 27, 65-80.
  6. 손문, 김종선, 정혜윤, 이융희, 김인수, 2007b, 한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의. 한국석유지질학회지, 13, 1-16.
  7. 손문, 김종선, 황병훈, 이인현, 김정민, 송철우, 김인수, 2007a, 거제도 동부에 분포하는 고제3기 암맥군: 절대연대와 지구조적 의미. 암석학회지, 16, 82-99.
  8. 손문, 1998, 한반도 동남부 제3기 마이오세 분지의 형성과 발달: 구조지질학 및 고자기학적 고찰. 부산대학교 이학박사 학위논문, 233p.
  9. 안성호, 김종선, 조형성, 송철우, 손문, 류충렬, 김인수, 2010, 한반도 남부 원생대 산청회장암체 내 암맥군의 분류와 상대연령. 지질학회지, 46, 13-30.
  10. 양석준, 박승현, 김정빈, 송교영, 김영석, 2010, 울진군 용당지역의 단열 발달사와 암맥의 관입 특성. 지질학회지, 46, 233-251.
  11. 양석준, 진광민, 김영석, 2008, 거제도 지역 암맥의 관입형태와 변형사로부터 도출된 고응력장의 변화. 지질학회지, 44, 747-764.
  12. 이기화, 2010, 한반도의 지진활동과 지각구조. 지구물리와물리탐사, 13, 256-267.
  13. 이종혁, 김용준, 최병열, 1993, 한국지질도(1:50,000) 죽변- 임원진 도폭 및 설명서. 한국자원연구소, 20p.
  14. 정창식, 길영우, 김정민, 정연중, 임창복, 2004, 영남육괴 북동부 죽변 지역 선캠브리아기 기반암의 지구화학적 특징. 지질학회지, 40, 481-499.
  15. 정창식, 이희권, 장병욱, 김정민, 이석훈, 임창복, 이종대, 김연중, 2001, 경북 울진지역 단층대 단층암에 대한 연대측정. 지질학회지, 37, 375-392.
  16. Anderson, E.M., 1951, The dynamics of faulting and dyke formation with application to Britain. Edinburgh & London, Oliver and Boyd.
  17. Baer, G. and Beyth, M., 1990, A mechanism of dyke segmentation in fractured host rock. In: Parker, A.J., Rickwood, P.C., Tucker, D.H. (Eds.), Mafic Dykes and Emplacement Mechanisms, A.A. Balkema, Rotterdam, 3- 11.
  18. Bahar, I. and Girod, M., 1983, Controle structural du volcanisme Indonesien (Sumatra, Java-Ball); application et critique de la methode de Nakamura. Bull. Soc. Geol. Fr., 25, 609-614.
  19. Best, M.G., 1988, Early Miocene change in direction of least principal stress, southwestern United States - conflicting inferences from dikes and metamorphic coredetachment fault terranes. Tectonics, 7, 249-259. https://doi.org/10.1029/TC007i002p00249
  20. Borradaile, G.J., 2001, Paleomagnetic vectors and tilted dikes. Tectonophysics, 333, 417-426. https://doi.org/10.1016/S0040-1951(00)00296-1
  21. Bussell, M.A., 1989, A simple method for the determination of the dilation direction of intrusive sheets. J. Struct. Geol., 11, 679-687. https://doi.org/10.1016/0191-8141(89)90004-7
  22. Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. George Allen & Unwin, London, 450p.
  23. Delaney, P.T., Pollard, D.D., Ziony, J.I. and McKee, E.H., 1986, Field relationship between dikes and joints: Emsplacement process and paleostress. J. Geophys. Res., 91, 4920-4938. https://doi.org/10.1029/JB091iB05p04920
  24. Esher, A., Jack, S. and Watterson, J., 1976, Tectonics of the North Atlantic dyke swarm. Phil. Trans. Roy. Soc. Lond., A, 280, 529-539.
  25. Fournier, M., Jolivet, L., Davy, P. and Thoma, J.-C., 2004, Backarc extension and collision: an experimental approach to the tectonics of Asia. Geophys. J. Int., 157, 871-889. https://doi.org/10.1111/j.1365-246X.2004.02223.x
  26. Gall, L.B., Tshoso, G., Dyment, J., Kampunzu, A.B., Jourdan, F., Feraud, G., Bertrand, H., Aubourg, C. and Vetel, W., 2005, The Okavango giant mafic dyke swarm (NE Botswana): its structural significance within the Karoo Large Igneous Province. J. Struct. Geol., 27, 2234-2255. https://doi.org/10.1016/j.jsg.2005.07.004
  27. Gautneb, H. 1988, Structure, age and formation of dykes on the island of Smola, Central Norway. Norsk Geografisk Tidsskrift, 68, 275-288.
  28. Glazner, A.F., Bartley, J.M. and Carl, B.S., 1999, Oblique opening and noncoaxial emplacement of the Jurassic independence dike swarm, California. J. Struct. Geol., 21, 1275-1283. https://doi.org/10.1016/S0191-8141(99)00090-5
  29. Hall, R., 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian. Earth. Sci., 20, 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
  30. Hutton, D.H.W., 1988, Granite emplacement mechanisms and tectonic controls: inferences from deformational studies. Trans. Earth. Sci., 79, 245-255.
  31. Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the common volcanic rocks. Can. J. Earth. Sci., 8, 532-548.
  32. Jolly, R.J.H. and Sanderson, D.J., 1995, Variation in the form and distribution of dykes in the Mull swarm, Scotland. J. Struct. Geol., 17, 1543-1557. https://doi.org/10.1016/0191-8141(95)00046-G
  33. Khan, T., Murata, M., Karim, T., Zafar, M., Ozawa, H. and Rehman, H., 2006, A Cretaceous dike swarm provides evidence of a spreading axis in the back-arc basin of the Kohistan paleo-island arc, northwestern Himalaya, Pakistan. J. Asian. Earth. Sci., 29, 350-360.
  34. Lee, K. and Yang, W.S., 2006, Historical seismicity of Korea. Bull. Seism. Soc. Am., 96, 846-855. https://doi.org/10.1785/0120050050
  35. Mayborn, K.R. and Lesher, C.E., 2004, Paleoproterozoic mafic dike swarms of northeast Laurentia: products of plumes or ambient mantle? Earth. Planet. Sci. Lett., 225, 305-317. https://doi.org/10.1016/j.epsl.2004.06.014
  36. Nelson, S.T. and Montana, A., 1992, Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am. Mineral., 77, 1242-1249.
  37. Nelson, E.J., Chipperfield, S.T., Hillis, R.R., Gilbert, J., McGowen, J. and Mildren, S.D., 2007, The relationship between closure pressures from fluid injection tests and the minimum principal stress in strong rocks. Int. J. Rock. Mech. Min. Sci., 44, 787-801. https://doi.org/10.1016/j.ijrmms.2006.10.004
  38. Pearce, J., Kempton, P. and Nowell, G., 2000, The origin of HFSE anomalies in subduction zone magmas: evidence from Hf-Nd isotope and element covariations. Goldschmidt 2000, September 3rd-8th, 2000, Oxford, UK. Journal of Conference Abstracts, 5, 775.
  39. Price, N.J. and Cosgrove, J.W., 1990, Analysis of geological structures. Cambridge University Press, Cambridge, 64p.
  40. Raymond, L.A., 1995, Petrology. The McGraw-Hill Company, New York, 125-126.
  41. Son, M., Kim, I.-S. and Sohn, Y.K., 2005, Evolution of the Miocene Waup Basin, SE Korea, in response to dextral shear along the southeastern margin of the East Sea (Sea of Japan). J. Asian. Earth. Sci., 25, 529-544. https://doi.org/10.1016/j.jseaes.2004.06.003
  42. Son, M., Seo, H.-J. and Kim, I.-S., 2000, Geological Structures and Evolution of the Miocene Eoil Basin, Southeastern Korea. Geosci. J., 4, 73-88. https://doi.org/10.1007/BF02910128
  43. Speight, J.M. and Mitchell, J.G., 1979, The Permo-Carboniferous dyke-swarm of northern Argyll and its bearing on dextral displacements on the Great Glen Fault. J. Geol. Soc. Lond., 136, 3-11. https://doi.org/10.1144/gsjgs.136.1.0003
  44. Sun, S.S. and McDough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders, A.D. and M.J. (eds.), Magmatism in ocean basins. Geol. Soc. London. spec. Pub., 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  45. Tapponnier, P. and Molnar, P., 1976, Slip-line field theory and large scale continental tectonics. Nature, 264, 319- 324. https://doi.org/10.1038/264319a0
  46. Tokarski, A.K., 1990, Dyke swarms as stress indicators: Two constrains. In: Parker, A.J., Rickwood, P.C., Tucker, D.H. (Eds.), Mafic Dykes and Emplacement Mechanisms. A.A. Balkema, Rotterdam, 101-104.
  47. Valentine, G.A. and Krogh, K.E.C., 2006, Emplacement of shallow dikes and sills beneath a small basaltic volcanic center - The role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth. Planet. Sci. Lett., 246, 217-230. https://doi.org/10.1016/j.epsl.2006.04.031
  48. Wilson, M., 1989, Igneous petrogenesis a global tectonic approach. Chapman and Hall, London, 466p.