• Title/Summary/Keyword: Hopping Method

Search Result 157, Processing Time 0.025 seconds

An Adaptive Frequency Hopping Method in the Bluetooth Baseband

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.785-787
    • /
    • 2005
  • In the Bluetooth specification version 1.0, one specific frequency in one piconet was created depending upon the device clock and the Bluetooth native address at one specific time slot in the frequency hopping method. The basic hopping pattern was arranging the 79 ISM frequency band in pseudo-random fashion. Possible problem is the chance of collision of ownership of one specific frequency by more than 2 wireless devices when they are within the communication-active range. In this paper, we propose the adaptive frequency hopping method in order to resolve the possible problem so that more than 2 wireless devices communicates with their own client devices without being interfered. The proposed method was implemented with HDL later to be synthesized with an automatic EDA synthesizer and verified as well. The implemented adaptive frequency hopping circuit operated normally at 24MHz which will be the target clock frequency of the target Bluetooth device.

  • PDF

An Adaptive Frequency Hopping Method in the Bluetooth Baseband (블루투스 베이스밴드에서의 적응 주파수 호핑 방식)

  • Moon Sangook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.237-241
    • /
    • 2005
  • In Bluetooth version 1.0, the frequency hopping algorithm was such that there was one piconet, using a specific frequency, resolving the frequency depending on the part of the digits of the device clock and the Bluetooth address. Basic pattern was a kind of a round-robin using 79 frequencies in the ISM band. At this point, a problem occurs if there were more than two devices using the same frequency within specific range. In this paper, we proposed a software-based adaptive frequency hopping method so that more than two wireless devices can stay connected without frequency crash. Suggested method was implemented with HDL(Hardware Description Language) and automatically synthesized and laid out. Implemented adaptive frequency hopping circuit operated well in 24MHz correctly.

Synthesis Method for Frequency-Hopping Sequences (주파수 도약 수열의 합성 기법)

  • Jo, Dongsik;Chung, Jin-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.472-473
    • /
    • 2021
  • The frequency-hopping sequence is a type of user-specific code that has been used in various ways in military communication, Bluetooth, and ultra-wideband communications. In a practical communication environment, a frequency-hopping sequence with an alphabet and a length suitable for the number of available frequencies and transmission period is required. Therefore, the design of the frequency-hopping sequence having various parameters is a very important problem in frequency-hopping spread-spectrum communication. To this end, this paper explores a method of synthesizing a sequence of a new length through the synthesis of existing frequency-hopping sequences. As a result, it is possible to present the possibility of frequency-hopping sequences applicable to various environments of communications.

  • PDF

Experimental Approach to Hopping Pattern Generation for One-legged Robot (한다리 로봇의 뜀뛰기 패턴 생성에 관한 실험적 접근)

  • Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.837-844
    • /
    • 2012
  • We introduce a pattern generation method for a hopping one-legged robot and verify it experimentally. The pattern is derived from the liner and angular momentum of a COM (Center of Mass), which are pre-scheduled. Because of the relation between angular velocities of joints and momemtums of the COM, joint angle trajectories are easily obtained. In addition, the landing impact force is reduced by only adjusting the landing timing. In the experiment, the one-legged robot hops in place with 0.06 s of flying time, and makes continuous hopping. Based on our experimental results, the proposed method can be applied to hopping and running of biped humanoid robots.

Methods of generating Hopping Patterns Based on Permutation Frequency Hopping SSMA System (치환방법을 이용한 주파수 도약 확산 시스템의 주파수 도약 패턴 발생 방법)

  • Choon Sik YIM;Ryuji KOHNO;Hideki IMAI
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1357-1365
    • /
    • 1991
  • This paper proposes the generation of several classes of frequency hopping patterns. which are derived by permutation, for an asynchronous frequency hopping spread spectrum multiple accecss system (FH/SSMA). The first class of hopping patterns is obtained by using a Latin square. The second class of hopping patterns is derived by generalizing the first class which is designed by using a permutation technique. The third class of hopping patterns is designed by using a rotational base of elements. We evaluate the hit property of the proposed classes of hopping patterns when these patterns are nutually shifted in an FH/SSMA system. Compared to the Reed Slolmon sequences generated by the conventional method, the sequence obtained by the permutation technique can reduce the number of hits among hopping frequencies in asynchronous time/frequency shift.

  • PDF

Numerical Analysis of Thermally stimulated current of Ionic Space charge Polarijation by Hopping Model (Hopping 모델에 의한 이온 공간전하분극 숙련재전류의 수치해석)

  • 김의균;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.91-94
    • /
    • 1990
  • The behavior of charged particle in dielectrics have a many effects on characteristics of the insulating materials. In this paper, numerical analysis method by hopping model was investigated application of TSC. As the results, there was a difference between characteristics of TSC by dipole polarization. Physical constant of movable ion corresponding to the experimental results was evaluated and also. Numerical calculations of unsaturated TSC and I-V characteristics were carried out by was of hopping model.

Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation (Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석)

  • Myeongjin Jang;Seongyo Yang;Gwang-Pil Jung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.

Biomimetic Hopping Strategy for Robots

  • Sung, S.H.;Youm, Y.;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2654-2659
    • /
    • 2003
  • In this paper, we present biomimetic hopping strategy which is more human-like for legged robot through stiffness modulation. Stiffness value is calculated from the motion of body center of gravity. This method enable to reduce impact force on touch-down, adaption on ground stiffness change and height modulation. Simple selected models will be used to validate this method. For general model, singular perturbation is used for control and simulation using stiffness modulation is presented.

  • PDF

Hopping Information Generation of Unknown Frequency Hopping Signals in Wireless Channel Environments (무선채널환경에서 미상의 주파수 도약신호에 대한 도약정보 생성 기법)

  • Ahn, Junil;Lee, Chiho;Jeong, Unseob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • A frequency hopping(FH) signal can change its carrier frequency during transmission and has spread-spectrum characteristics in these frequency bands. Therefore, FH signals are widely used in applications that require low-probability-of-intercept(LPI) and anti-jamming (AJ) abilities in wireless communication environments. In this study, the authors propose a method for generating hopping information (HI), which includes start time, dwell time, and hopping frequency for unknown FH signals. The proposed blind HI generation method produces signal detection information based on the spectrum data and then extracts HI using operational procedures for estimating the target FH signal's status, such as appearance, maintenance, and termination. Further, simulation results demonstrate that the proposed method provides accurate HI without detection omissions for various FH signals.

Performance Analysis of Multi-hop Wireless Networks under Different Hopping Strategies with Spatial Diversity

  • Han, Hu;Zhu, Hongbo;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2548-2566
    • /
    • 2012
  • This paper derives two main end-to-end performance metrics, namely the spatial capacity density and the average end-to-end delay of the multi-hop wireless ad hoc networks with multi-antenna communications. Based on the closed-form expressions of these performance metrics, three hopping strategies, i.e., the closest neighbor, the furthest neighbor and the randomly selected neighbor hopping strategies have been investigated. This formulation provides insights into the relations among node density, diversity gains, number of hops and some other network design parameters which jointly determine network performances, and a method of choosing the best hopping strategy which can be formulated from a network design perspective.