Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.6
/
pp.101-108
/
1998
An efficient approach to recognize occluded objects is to detect a number of essential features on the boundary of the unknown shape. The salient points including corner points, tangential points and inflection points are detected by the relation of neighboring pixels of each pixel on the boundaries. Corner points are usually detected in the curvature function and tangential points and inflection points are detected by median filtering the curvature function to avoid the effect of quantization noise as corner points is not sufficient to represent an object with lines and arcs. Then, these salient points are used as features for object matching. Discrete Hopfield Neural Network is used for object matching. Experimental results show that the matching result using salient points is better than those of using corner points only when an object consists of lines and arcs.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2003.05a
/
pp.87-91
/
2003
It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas. However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. The other problem of MUSIC and ESRPIT is to require calibrated antennas with uniform features, and are sensitive to the manufacturing facult and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected hopfield neural model. Computer simulations show the validity of the proposed algorithm. The proposed method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.
It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas, However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. the other problem of MUSIC and ESPRIT is to require calibrated antennas with uniform features, and are sensitive ti the manufacturing fault and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those methods require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected Hopfield neural model. Computer simulations show the validity of the proposed algorithm. It follows that the proposed method yields better AOA estimates than MUSIC. Moreover, out method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.20
no.3
/
pp.283-291
/
2002
Since GPS's SA cancellation, the interest is converged in correction of errors such as atmospheric delay and multipath that weight had been small relatively, which can improve the accuracy of positioning through modelling research. The aim of this study have an extensive comparison of the various tropospheric delay models (Goad&Goodman, A&K, Hopfield and Sasstamoinen) and mapping functions(Niell, Chao, and Marini). Expecially, the tropospheric delay amounts by change of the GPS satellite elevations, and the delay by various combination between zenith delay models and mapping functions, compared and examined. For this, programmed the total delay models and the combined models which can be described as a product of the delay at the zenith and a mapping function. The result of study, especially, as the minimum elevation of included data is reduced under $10^{\circ}$, it was considered to be reasonable that the prediction of tropospheric delay considering combination and mapping character of functions about the transition of the zenith delay to a delay with arbitrary zenith angle.
This study develops a neural network for solving optimization problems. Hopfield network has been used for such problems, but it frequently gives abnormal solutions or non-optimal solutions. Moreover, it takes much time for solving a solution. To overcome such disadvantages, this study adopts a neural network whose output nodes change with a small value at every evolution, and the proposed neural network is applied to solve ALB (Assembly Line Balancing) problems . Given a precedence diagram and a required number of workstations, an ALB problem is solved while achieving even distribution of workload among workstations. Here, the workload variance is used as the index of workload deviation, and is reflected to an energy function. The simulation results show that the proposed neural network yields good results for solving ALB problems with high success rate and fast execution time.
In previous study about combinatorial optimization problem solver by using neural network, since Hopfield method, to converge into the optimum solution sooner and certainer is regarded as important. Namely, only static states are considered as the information. However, from a biological point of view, the dynamical system has lately attracted attention. Then we propose the "dynamical" combinatorial optimization problem solver using hysteresis neural network. In this article, the proposal system is evaluated by the N-Queen problem.
Proceedings of the Acoustical Society of Korea Conference
/
1993.06a
/
pp.201-205
/
1993
A decision-theoretic concept is introduced to investigate whether targets of interest in array sensor systems are present at some steering direction or not. The solutions to this problem are described as a set of simple numbers 0 or 1 corresponding to the direction under consideration. This coded number representation is transplanted in the optimisation technique based on the Hopfield neural network, which may provide a new aspect of determining the direction of arrival (DOA) of sources. To cast the perspectives of the proposed approach and illustrate its effectiveness in source direction finding in array sensor systems, simulation results and related discussions are presented in this paper.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.4
/
pp.325-330
/
2001
It has been realized that the results of circuit level simulation of neural networks, used for optimization problems, arc much different from those of algorism level simulation. In other words, the outputs converges asymptotically as time elapes, however, the input convergence depends on the value of parasitic conductance connected between input node and ground. Also, this conductance affects system performance. This paper discusses the influence of input conductance on the convergece of the continuous Hopfield neural networks. The convergence has been analyzed for the input and output nodes of neurons. Also, the characteristics of equilibrium points has been analyzed depending on different values of the input conductance.
In this paper, Hopfield & Tank model-like artificial neural network structure is proposed, which can be used for the optimal path planning problems such as the unit commitment problems or the maintenance scheduling problems which have been solved by the dynamic programming method or the branch and bound method. To construct the structure of the neural network, an energy function is defined, of which the global minimum means the optimal path of the problem. To avoid falling into one of the local minima during the optimization process, the simulated annealing method is applied via making the slope of the sigmoid transfer functions steeper gradually while the process progresses. As a result, computer(IBM 386-AT 34MHz) simulations can finish the optimal unit commitment problem with 10 power units and 24 hour periods (1 hour factor) in 5 minites. Furthermore, if the full parallel neural network hardware is contructed, the optimization time will be reduced remarkably.
Proceedings of the Materials Research Society of Korea Conference
/
2003.11a
/
pp.157-157
/
2003
수평 전기로에서 CdIn2Te4 다결정을 용융법으로 합성하고 Bridgman법으로 tetragonal structure의 c축에 평행한 CdIn2Te4 단결정을 성장시켰다. c축에 평행한 시료의 광흡수와 광전류 spectra를 293K에서 10K까지 측정하였다. 광흡수 spectra에 의해 band gap Eg(T)는 varshni공식에 따라 계산한 결과 1.4753eV-(7.78$\times$$10^{-3}$eV/K)T$^2$/(T+2155K)임을 확인하였다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 9.01$\times$$10^{16}$ /㎤, 219 $\textrm{cm}^2$/V.S였다. 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting $\Delta$cr값이 0.2704 eV이며 spin-orbit $\Delta$so 값은 0,1465 eV임을 확인하였다. 10K일 때 광전류 봉우리들은 n=1일때 Al-, Bl-와 Cl-exciton 봉우리임을 알았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.