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Abstract

A decision-theoretic concept is introduced to investigate 
whether targets of interest in array sensor systems are present 
at some steering direction or not. The solutions to this problem 
are described as a set of simple numbers 0 or 1 corresponding 
to the direction under consideration. This coded number 
representation is transplanted in the optimisation technique 
based on the Hopfield neural network, which may provide a 
new aspect of determining the direction of arrival (DOA) of 
sources. To cast the perspectives of the proposed approach and 
illustrate its effectiveness in source direction finding in array 
sensor systems, sim니ation results and related discussions are 
presented in this paper.

I. Introduction

In the last decade, high resolution array signal 
processing methods have appeared that are commonly based 
on the eigenstructure of the correlation matrix. These methods 
[1-6] consist of estimating the correlation matrix from the 
measurements of equi-spaced array sensors and decomposing 
the matrix into the signal subspace and the noise subspace. The 
orthogonality between the subspaces is exploited to achieve the 
high resolution spectral distribution over the steering angle. 
Those techniques have provided basics and fundamentals for 
approaching acoustic radar or sonar systems problems - the 
early monitoring of stationary or moving sources (aircraft or 
sea vessels). Generally, the concepts and fundamentals are 
based on linear algebra, i.e. singular value decomposition [7], 
which enables us to estimate the 'best-fitted' direction-of- 
arrival of radiating or reflecting sources in the least squares 
sense.

However, we have observed another aspect arising from 
the array sensor systems, that is the early warning system. It 
involves a classical problem of deciding whether sources are 
present at the steering direction or not (in details discussed in 
Chapter 2 of reference [8]). When a source at the steering 
angle is present, the solution corresponding to the position is 
one, and otherwise it becomes zero. Obviously, the solutions 
to the pro미이，are the set of simple numbers, 0's or l's. It is 
indeed a decision-theoretic problem that accompanies a 
'nonlinear' mapping of processed information about the DOA 
o가。the decision space whose state is generally described as a 
set of binary numbers. The above eigenstructure methods may 
provide the basis for obteining related information, but do not 
lead to any logical approach to the nonlinear decision mapping 

problem. This fact implies the possibility of approaching the 
direction finding problem from different viewpoints.

This paper exploits the optimisation technique using the 
Hopfield neural network models [9,10], which have proven to 
be very successful in combinatorial (NP-completeness) 
optimisation problems: the traveling salesman problem of 
finding the shortest route connecting multiple cities [11] and 
the Hitchcock problem of distributing a product from several 
sources to numerous locations in such a way to miminising the 
transportation cost [12]. One of the important properties of the 
Hopfield model-based optimisation method is the ability to 
simultaneously consider a large number of alternative 
hypotheses and at remarkable speed make adequate decision 
on them for given data. This feature has provided the major 
motivation of investigating the effectiveness of the Hopfield 
model-based optimisation in source direction finding. In 
Section II, basic ideas behind the Hopfield models are 
described and linked to the above decision problem in the array 
sensor systems. In Section III, we map this decision problem 
onto the Lyapunov candidate function of the Hopfield model 
and make modifications for improving the possibility of 
convergence to the better solutions. Simulation results and 
discussions are presented in Section IV. Finally, concluding 
remarks are summarised in Section V.

II. Fundamentals in Hopfield Neural 
Network Models

1. Hopfield Models

The Hopfield models [9,10] consist of a number of 
mutually interconnected computation units, called the neurons, 
whose states are defined by their outputs {vj}. Each neuron 
state can be described as a discrete value, i.e. 0 or 1. Fig. 1 
shows the schematic setup of Hopfield neural network models.

Each neuron i receives multiple inputs, denoted by the 
vector v = 加，v> ... , vn]t, projects them onto its 
interconnection weight vector wj 그 [wn，wi2, ... ,WiN〕T, and 
then adds an externally supplied bias input bj to the weighted 
value. This result represents the internal potential U)of neuron i

N
Ui= £ Wij Vi + 버 (1)

j=1
where N is the number of neurons.
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Weights: { Wij}  Sample Unit Mapping Unii 
Fig. 1 Schematic setup of Hopfield neural networks

When switches sw； in Fig. 1 turn on at some discrete time, the 
sampled internal potentials 山 are sent to the nonlinear 
activation units to change or leave neuron outputs according to 
a threshold rule performed by the nonlinear units Nj, that is

vj(n) = N( ui(n)) = stp( ui(n)) (2)
where n is discrete time index and stp(u) denotes a unit step 
function which is 1 for u > 0 and 0 for u < 0. Thus neurons 
take binary values 0 or 1. These binary outputs are feed back 
to the input junction of interconnected weights so that neurons 
gradually evolve to one of stable states in N-dimensional 
discrete space.

Hopfield [9,1 이 showed that if neuron weights w；j are 
symmetric (w^ = Wji) then neurons in the network model 
evolve to one of stable states in such a way of minimising a 
Lyap나nov candidate function, called the energy function,

I N N N
E = £w—Vi・Vj - (3)

zi=ij=i j=i

In fact, the evolution of neurons given in (1) is seen to be 
identical to the negative gradient of the energy function (3) 
with respect to the neuron states {vj. Here, one point is clear 
that only when we define a cost function of interest in our 
problems that is equivalent to the energy function (3) we can 
find a solution to the problems by updating the neuron states 
according to (1) and (2). This aspect is well illustrated in 
previous work such as the traveling salesman problem [11] 
and the Hitchcock problem [12]. A major issue in defining the 
energy function for direction finding will be examined in 
Section III, and the rest of this section will address the neuron 
state transition scheme.

2. Asynchronous State Transition Mode

In Fig. 1, the transition of neuron states are shown to 
depend on the ways of operating the switch/sample unit. As 
noted by Takeda and Goodman [12], there are several possible 
ways of doing it. When we turn on all the switches 
synchronously at some discrete time n, we can simultaneously 
update all the neurons. This state transition scheme, referred to 
as the synchronous state transition, seems to be a 'normal' 
one. By contraries in the stability proof in [9,10], we have 
experienced 'unexpected' results of this scheme, i.e. 
'oscillatory or wandering' behaviour of the neuron states 
around the minima of the energy function, and moreover have 
failed to implement the state transition in a stable manner. A 
clear understanding of the reason for these unfavorite features 
still remains as an open question in the ne나ral network 

community. However, it should be noted that the unfavorite 
features can arise from the ways of updating all the neuron 
states, i.e. the way of operating the switches in Fig. 1. Takeda 
and Goodman noted that the reason can come from the self
feedback (wn ¥ 0) or non-zero off-diagonal weight terms (w；j 
丰 0). Unfortunately, both terms are wholly dependent on each 
application under consideration.

We choose the asynchronous neuron state transition scheme
[12] so as to reduce the above unfavorite features as small as 
possible. The switches in this asynchronous mode is turn on 
and off with random delay between each switch such that 
neurons change their states

N
Ui(n + Atj) = £ Wjj • Vj(n + Atj) + b； 

j=i
and vi(n + Ati + £)느 N(ui(n + Atf)) (4)
where M is random time delays and e is a small positive 
constant. Given N positive random variables, one may decide 
the order of neuron state transition: one neuron corresponding 
to the smaller time delay updates its state earlier and the other 
corresponding to the larger delay does latter. This transition 
scheme means that only one neuron is updated at some 
instance and that it can use information about new states of 
other neurons that have already updated their states. Takeda 
and Goodman suggested an ascending order, 0 < At] < At2 £ 
■- < AtN，which was very successful in solving the Hitchcock 
problem [12]. At the beginning of this study, we had 
examined this scheme for state transition and observed that the 
ascending order is not effective in solving the direction finding 
problem as what will follow. This point has allowed us to 
further find an important aspect occurring during neuron state 
transition.

Let us consider the specific state transition of a neuron from 
0 to 1 under the condition that the rest of neurons are zero. The 
energy of zero-state neurons is readily seen to be zero as 
defined in (3) and that of one-state neuron is also obtained by 
calculating (3). The difference energy level between them gives 
a clue for judging what amount energy level is increases or 
decreased due to the specific state transition. By following this 
specific procedure for each ne나ron, we can obtain the energy 
difference levels for all the neurons and then sort them in an 
ascending order, i.e. the first for the lowest energy level and 
the last for the highest one. The state transition of one neuron 
corresponding to the lower energy level is obviously seen to 
minimise as large as possible. Thus, this paper will update 
each neuron state according to the ascending order of the 
energy level difference. This scheme at least provides the 
chance of decreasing the energy (3) more rapidly and safely by 
updating the neurons with the lower energy level earlier than 
those of the higher. We will further examine the effectiveness 
of the proposed state transition scheme for Hopfield neural 
network-based optimisation in Section IV.

III. Hopfield Mod이” Based Direction
Finding

In the applications of Hopfield neural networks, another
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important question is how to draw logical clues from our 
practical problems and then link them to neuron states. First, 
let us consider K equi-spaced array sensors to monitor M plane 
wave sources located at angles {0m: m = 1,…，M }. Using 
the quadrature demodulation-modulation unit as in Fig. 2, 
monitored signals can be obtained in a analytic form of 
sampled narrowband signals for n = 1,..., Nt

y(n) 그 [yi(n), y2(n), ... , yK(n)卩
=S - c(n) + np(n) (5)

In (5), the matrix S = [s】，s% - , sm] consists of the steering 
vectors sm = [1, e'^Tm , e"->2Tm , - , e项k시)侃 卩= k • d 
sin(0m) denotes aphase difference, K and d are the wave 
number and the gap between equi-spaced array sensors), c(n) 
-[ci(n), C2(n),…，CM(n)]T is the complex amplitude vector of 
M sources, and np(n) = [np>1(n), np.2(n), ■- , nPiK(n)]T 
denotes the preprocessed complex noise vector.

Fig. 2 Preprocessing Scheme of Quadrature Demodulation and Modulation.
o)o = 2n(fi> - AB/2), AB: the bandwidth of lowpass filter, fb: lhe considered 
frequency, j: complex number, ycos(t) and ysm(l): (he sine and c osine 
quadrature components, and the analytic signal y(t) = y<»B(t) + j ysin(t).

A major problem of interest in this paper is to decide 
whether a source at some direction 9 is present or not. We may 
divide the range of a limited steering angle to some desired 
resolution. For example, given the range between the starting 
and final directions 0S and 하 (0f > 0S), our interest is 
concerned with No+l directions {% 끄 Os + i A6: i = 0, 1, … , 
Ng} with direction resolution A9 = (% - 0S) / N© (No = the 
direction index). If a source at the direction & is present, then 
the decision result may be described as a value of 1 and, if not, 
it may be a value of 0. One bit may be sufficient to describe the 
decision state at direction 0j. Thus each neuron state v, is 
related to the decision state of direction 0j. For Nq+ 1 
directions, (Ne+1) neurons participate to solve the direction 
finding problem.

To approach the direction finding problem, we should 
define an adequate cost function that is of the quadratic form 
similar to (3). As introduced by Rastogi et al. [13], the 
orthogonal projection matrix Pj = u； ■ u；H (the super script H 
denotes the Hennitian operator), which is constructed by the 
unit steering vector UiT = [1, e'JTi, e'j2Ti,…,] / Vie 
(Ti 그 K-d sin(Oj)) of direction Gj, can be exploited to examine 
the presence of a source at the direction. By projecting time 
series y(n) onto the orthogonal matrices {R}, we obtain 
(Nq+1) direction components

di(n) = [Ui - UjH] • y(n) = a；(n) ui( (6)
which include useful information to judge existence of source 
at direction 0j so that they may be related to the decision result 
described as the neuron states (v,}. It is readily seen that if vj 
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is close to 1 then much 'weighting' value is assigned to the 
나nit vector Uj(n) while in case of v, = 0 no significance is 
given to it. Let the projected direction matrix D(n) = [di(n), 
d2(n),…，dwe+i(n)] (= [Pi y(n), P2*y(n)> …，pN0+ry(n)]) at 
time index n and the decision state v = [vi, V2,... , vn0+i]t. 
Then we can construct a K-dimensional signal ys(n) = D(n)-v 
and compare it to the sampled signal y(n). Here we can define 
the cost function as the mean squared errors between the 
sampled and constructed signals for the Nt samples

•E = Z II y(n) - ys(n) IP - £ ? II y(n) IP 
Ntn=l Nt 顽

N0+1 Ne+1 ] Nt
= E £ Re{— £ ai(n)*-aj(n)-5ij}-viVj 

i=l i=l ' n=l
Ne+1? Nt

-£ 冷 £11 街(n)l|2.vi (7)
i=l %느1

where Re{ } denotes the real part of complex number, the 
symbol * is the complex conjugate, and a scalar value 海= 

UiH Uj is the direction cosine between two unit vectors. As 
explained in [13], the cost function is of the quadratic form 
with respect to the decision states {vj} and is also similar to the 
Hopfield energy function (3). This implies the possibility of 
solving the direction finding problem using the Hopfield neural 
network-based optimisation technique.

To remove the instability arising from the non-zero diagonal 
terms wq # 0 of the coefficients of Vj-v, in (7), we may add to 
the cost function (7) another cost term

Nq+I 1 Nt
ZH a.(n) l|2}-v,(l-vi) (8)

i=l
whose minimisation constraints the decision results vj to lie in 
0 or 1. Therefore, it is straightforward to obtain the notations 
of the interconnection weights and the bias terms as in (3) by 
computing the negative gradient of the added cost function of
(7) and (8) with respect to the decision states {v；}

2 ] M
WijH~ 瓦Re{瓦 £ai(n)*・aj(n)心帛 fori^ j,그 0, (9)

1 Nt
bi =寻 XU ai(n)lP}. (10)

N n=l
The interconnection weights Wjj are shown to be computed 
from the mean of real parts of inner product of two direction 
vectors ai(n)Uj and aj(n)uj, and the bias terms to be the mean 
squared value of direction vector ai(n)u；. The weights and the 
bias terms in (9) and (10) appear similar to an time averaged 
version of the corresponding terms in [13-15]. They are 
substituted into those of the state transition scheme (4) in 
Section II.2 Therefore, we are ready to investigate the 
effectiveness of the Hopfield network-based optimisation 
technique for direction finding in the array sensor systems.

IV. Simulation Results and Discussions

Computer simulations were carried out to examine the 
decision results by applying the Hopfield model-based 
optimisation to the direction finding problem in the array 
sensor system that consists of 16 equi-spaced sensors (K=16).
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Other simulation parameters were as follows: the space d was 
chosen to satisfy Kd = k (k = wave number 2兀fjc, fo = 
considered frequency and c = wave speed), a sampling time 
AT = f0/128 (128 words per period), and the normalised 
bandwidth of low-pass filter is AB = 0.1 (pass-bandwidth x 
2-AT). We considered four sources (M = 4) located at (6.0°, 
15.0°, 31.0°, 44.0°} whose relative amplitudes were {ICStil} 
={1.0, 0.71, 1.1, 1.0}. Given the signal-to-noise ratio 
(SNR), the Gaussian random variables with zero mean and 
variance that is where ratio:

4
= { £ ICslP/2- 10SNR/10 } xAB-2 (11)

i=l
were added to the original source signals and then the 

preprocessing unit shown in Fig. 2 was employed to generate 
'noisy' analytic signals as given in (5). The initial neuron 
potentials {ujo} of neurons were set to 0.() and the outputs 
(vi.o} were initialised by the small random variables uniformly 
distributed in 10 3x[ 0,1]. The asynchronous state transition 
scheme proposed in Section II.2 were 나sed to 나pdaie the 
neuron outputs.

In this simulation, the range of direction-of-arrival (DOA) 
from 0.0° to 50.0° degrees was discretised at interv지s of 0.5° 
degrees such that a Hopfield network model of 101 neurons 
was considered to examine the decision theoretic problem of 
source direction finding. For SNR = -20 [dB] (equivaknl 
SNR = 0 [dB] after quadrature demodulation-modulation- 
based preprocessing), we first computed the weights and bias 
terms in (10) and (11), evaluated the difference energy levels 
of 101 neurons by changing each neuron state from 0 to 1, and 
then sort them in the ascending order. Fig. 3 shows a typical 
example for the evaluated energy difference levels of 101 
neurons. According to the ascending order of the difference 
energy levels, neuron states were updated one by one.

Fig. 3. Energy difference level for state transition of 101 
neurons from 0 to 1.

Fig. 4 (a) illustrates the decision state (solid line), that is the 
neuron outputs, after updating 101 neurons. Note that the thick 
dashed line are the mean squared value of projected direction 
vectors {IbJ} in (10) and the thin vertical lines denote the 
position of four sources. Fig. 4 (b) shows the trend of the 
network energy defined in (7) during 101 neuron state 
updates. Specifically, the energy level is shown to remain 
constant after first 47 neurons were updated. This means that 
the decision state are settled down to the final steady solution. 
We further examined seven independent samples to see their 
final decision results. Table 1 shows the final res니is, their 
mean and variance.

To compare the relative performance, we chose the 
state transition scheme in previous work [12], referred to as

Number of neuron state transitions

Fig. 4. Decision result and trend of energy level after 101 
neuron state updates.

TABLE 1. Decision results for seven independent samples.
Samples Source Locations [deg]: 

01 02 °4
Energy E

#1 6.0 15.5 31.0 44.0 -5662.68
#2 6.0 15.0 31.0 44.0 -5651.28
#3 6.0 15.0 31.0 44.0 -5665.23
啊 6.0 15.5 31.0 44.0 -5673.64
#5 6.0 15.5 31.0 44.0 - 5629.15
#6 6.0 15.5 31.0 44.0 ・ 5659.52
#7 6.0 15.0 31.0 44.0 -5626.94

Mean 6.0 15.3 31.0 44.0 -5652.64
Variance 0.00 0.14 0.00 0.00 1962.15

the 'seq나eniial' state transition scheme, which is based on the 
order of time delays as 0 < At! < At2 으 •- < Fig. 5 shows 
the final state and the trend of the network energy respectively, 
which is the best results among seven independent runs. This 
state update scheme is found to be ineffective in solving the 
direction finding problem in this paper.

-600()'  —1--------- 1 ——1-----------丄-------- *-------- 1-------- 1-------- '------- * ------
0 50 100 150 200 250 300 350 400 450 500

Number of neuron state transitions

Fig. 5. Simulation results for the state update scheme in [12].

We observed from this result an important fact that a neuron 
corresponding to the smaller mean power {1베} in (10) (i.e. the 
peak located between 25° to 30° in Fig. 5) can take 1 because 
its decision state of 0 or 1 does make little difference in the 
energy level. Intuitively, this decision state may ignore due to 
no significance in the energy minimisation, i.e. the decision 
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problem. This fact has allowed us to develop the proposed 
update scheme in Section II.2, that is the earlier update for the 
higher significance in the network energy, and, futhermore, to 
achieve the better performance of the Hopfield neural network
based decision-theoretic approach to the direction finding 
problem.

V. Concluding Remarks

We introduced another aspect for source direction 
finding in array sensor systems and fundamentals to approach 
that problem in a sense of classical decision theory. The 
mapping of decision states over the considered DOA range 
onto the outputs of the discrete Hopfield neural network are 
found to play a central role in this paper. A new state transition 
scheme is proposed and the simulation results at least may 
indicate that the proposed scheme is more successful in source 
direction finding than the previous one. Further decision- 
theoretic study on two issues - the closely located sources 
direction finding problem and the wideband sources direction 
finding pro바em - is in progress.
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