• Title/Summary/Keyword: Hooked Structure

Search Result 10, Processing Time 0.024 seconds

An Experimental Study on the Anchorage Capacity by Diameter and Anchor Type of Re-bar (콘크리트 구조체 매입 철근의 직경 및 유형별 앵커력 측정실험 연구)

  • Cho, Seong-Yeol;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.67-73
    • /
    • 2014
  • Construction equipment such as tower crane should be installed in a field without appropriate anchorage to cause a collapse of crane. The anchorage capacity can be varied with Anchor length, concrete strength, anchor diameter, hooked or non hooked these variables will be made and tested in the study. It is shown what anchorage capacity will be more effective case by case. Hooked and non-hooked rebar anchor concrete weight with dia 22mm rebar are shown with initial displacement at 170~220KN of hooked case and 200~210KN of non-hooked one which are linearly increased, without any ductility behavior with almost brittleness. Three(3) same test pieces are almost similarly behaviored without relation to hooked or non-hooked cases. It is found out that the bigger diameter of rebar becomes, the more resistant capacity could be made, but conversely ductility against sudden collapse similar to brittleness becomes the more insufficient. It is also found out that dia 16mm rebar could be more effectively applied to heavy support weight at construction sites.

Design Approach of Q-band Precision Subminiature Coaxial Adaptor Using 3D Simulator and Its Experimental Results (3D 시뮬레이션과 측정값을 이용한 Q-band 정밀 초소형 동축 어댑터의 설계)

  • Wang, Cong;Qian, Cheng;Cho, Won-Yong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • This paper presents the design approach and test results of the Q-band precision subminiature coaxial adaptor based on transmission line theory using multi-step impedance and air-holes to increase its cutoff frequency. In order to increase the frequency performance, the adaptor is designed with hooked structure, fixing step, multi-air-holes, and outer conductor. The return loss increments due to the hooked structure and multi air-holes are minimized to 2 dB and 1.5 dB, respectively. A VSWR(Voltage Standing Wave Ratio) of <1.2 is obtained from DC to 40 GHz, while guaranteeing the durability of the adaptor from room-temperature$(25^{\circ}C)$ to $120^{\circ}C$.

  • PDF

An Experimental Study on Bonding Capacity by Concrete Strength and Type of Re-bar Anchor (콘크리트 강도별 매입 철근의 유형별 부착력 측정실험)

  • Cho, Seong-Yeol;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Many construction equipment or supporting structure should be installed in a field without appropriate anchorage to cause a collapse of those. Anchor length, anchor diameter, hooked or non hooked will be made and tested in the study. This one will be analyzed and compared with the previous study in order to find out some difference, strength by strength, based on this study. Embedded re-bar and the resistant capacity against pulled out force of re bar have been tested and analyzed by concrete design strength and rebar diameter in the study. 21Mpa and 24MPa compressive strength which are used in construction practice have been applied as variables. Those rebars are composed of D13, D16. D22 which are mostly used at construction sites. The followings are summarized as conclusions.1) ductility is not increased as rebar diameter becomes larger under the condition of non-hooked anchorage.2) those are two times of displacement difference between small diameter of rebar and large one with hooked anchorage of rebar while being 1/10 times difference with non-hooked condition but, only 10% difference of maximum load are shown, not conspicuously between hooked and non-hooked condition.3) displacement related to ductility can be three(3) times decreased if only concrete compressive strength and rebar diameter become larger with heavy support weight.

Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Kim, You-Chan;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.391-401
    • /
    • 2017
  • In this study, the effects of water-to-binder (W/B) ratio and replacement ratio of blast furnace slag (BFS) on the compressive strength of concrete were first investigated to determine an optimized mixture. Then, using the optimized high-strength concrete (HSC) mixture, hooked steel fibers with various aspect ratios and volume fractions were used as additives and the resulting mechanical properties under compression and flexure were evaluated. Test results indicated that replacement ratios of BFS from 50 to 60% were optimal in maximizing the compressive strength of steam-cured HSCs with various W/B ratios. The use of hooked steel fibers with the aspect ratio of 80 led to better mechanical performance under both compression and flexure than those with the aspect ratio of 65. By increasing the fiber aspect ratio from 65 to 80, the hooked steel fiber volume content could be reduced by 0.25% without any significant deterioration of energy absorption capacity. Lastly, complete material models of steel-fiber-reinforced HSCs were proposed for structural design from Lee's model and the RILEM TC 162-TDF recommendations.

Biased hooking for primitive chain network simulations of block copolymers

  • Masubuchi Yuichi;Ianniruberto Giovanni;Marrucci Giuseppe;Greco Francesco
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.99-102
    • /
    • 2006
  • Primitive chain network model for block copolymers is used here to simulate molecular dynamics in the entangled state with acceptable computational cost. It was found that i) the hooking procedure rearranging the topology of the entangled network is critical for the equilibrium structure of the system, and ii) simulations accounting for the different chemistry, i.e., with a biased hooking probability based on interaction parameter ${\chi}$ for selection of the hooked partner, generates a reasonable phase diagram.

The Structures of the Pharyngeal Bones and Teeth in Two Korean Ricefishes (Pisces, Adrianichthyidae), Oryzias latipes and O. sinensis (한국산 송사리속 Oryzias 어류 2종의 인두골과 인두치 구조)

  • Kim, Hyun-Tae;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.25 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • A study on the structures of the pharyngeal bones and teeth in two Korean ricefishes, Oryzias latipes and O. sinensis, was carried out to find out interspecfic differences. In the pharyngeal bones, both two species have a pair of upper pharyngeal bone (stilliform shape) and lower pharyngeal bone (rectangular shape). In the lower pharyngeal bones, in particular, the number of the row was 6 to 7 in O. latipes and 5 to 6 in O. sinensis. The pharyngeal teeth also showed different types in two species: O. latipes of a top-hooked type and O. sinensis of a conical type. Through this study, we confirmed that the two Korean ricefishes show distinctive characteristics in the structure of the pharyngeal teeth.

300kV DC Charging system for Synthetic Testing Facility (합성 차단 시험용 DC300kV 충전장치 개발)

  • Rim, G.H.;Choi, Y.W.;Park, J.M.;Park, K.Y.;Lee, W.Y.;Chung, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1354-1356
    • /
    • 2000
  • This paper deals with a 300kV dc charging system to be used ?s a voltage source in a circuit breaker synthetic short-circuit-test facility. Cockcroft-walton circuit is used to step up the rectified voltage from a single phase transformer of which primary winding is hooked up to an ac220 wall plug. Two systems with the same ratings have been designed and manufactured. The two system have been made of different supporting structure with different insulating materials. The paper describes a couple of charging schemes, system configurations and the synthetic test circuit in which the developed system is to be used.

  • PDF

Microstructure of the biological attachment devices in the ladybug Harmonia axyridis (Coleoptera: Coccinellidae)

  • Moon, Myung-Jin;Kim, Hyo-Jeong;Kim, Hoon;Park, Jong-Gu
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2012
  • Biological attachment device is optimized in insect legs for attachment onto the variety of natural substrate. We have studied the microstructural characteristics of the tarsal appendages in the ladybug Harmonia axyridis using scanning electron microscopy to reveal the attachment system of their legs. The attachment devices are composed of claws and adhesive pads. The claws are connected with pretarsal segment, and their apical diverged hooks are developed to hold rough substrates. In contrast, the adhesive pads have an adhesive function onto smooth surface. The pads are interspersed at the ventral part of each tarsomere, and are composed of two kinds of hairy setae. The discoid tip seta (DtS) has a spoon-shaped endplate usually with a rounded concave structure, whereas the pointed tip seta (PtS) has a pointed tip, usually with a hooked endplate. While the PtS is broadly localized concentrically on the marginal area of both the proximal and distal pads, the DtS can be seen at the central areas of each adhesive pad except for the hind legs. Our findings demonstrate the presence of the direction-dependence pattern of the fibrillar system as well as a functional modification of the tenent setae to achieve proper contact with almost any kind of substrates.

Steel Fiber Reinforcing Effect Analysis of Slab Panel Structure and Assessment Technics of Toughness (강섬유보강 패널구조의 보강효과 분석 및 인성평가 기법)

  • Jeon, Chan-Ki;Park, Sun-Kyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.209-220
    • /
    • 1999
  • This paper is aimed to evaluate the effectiveness of flexural toughness of slab panel structures($60{\times}60{\times}10$) reinforced by steel fiber instead of wire mesh. Steel fiber used in this study is double hooked Dramix type fiber. And the fiber length is 60mm, diameter is 0.8mm, Various assessment methods of toughness index are used to estimate the proper effectiveness. In this experimental study, we find that Johnston, JCI-SF4 and EFNARC method are more effective to assess the flexural toughness of slab panels than the others. And the steel fiber is very effective alternative material to reinforce slab panel structures instead of wire mesh. Fiber volume fraction of 0.5~0.75% is more useful than the others in enhancing the post-peak energy absorption and toughness index by Johnston's $I_{5.5}$ assessment method. And the slab panels reinforcing with steel fiber are more resistant to crack propagation than wire mesh reinforcing slabs.

Design and Prototyping of Lifting Devices for Manhole Cover using Structural Analysis and 3D Printing (3D 프린팅과 구조해석을 이용한 맨홀의 부양장치 설계 및 제작)

  • Lee, Hyoungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.648-654
    • /
    • 2018
  • In order to maintain manholes installed on the road, the manhole should be easy to open and close. Manhole covers under harsh conditions require that they can be lifted when attempting to open the manhole because the frame and cover are stuck and difficult to open and close. In this study, the design of a lifting mechanism was carried out to improve and integrate the locking type manhole. The mechanism of the locking manhole is that when the bolt located at the center is turned, the hub connected with the bolt descends, and the hook connected to the hub is rotated. The end of the hook is hooked to the manhole frame. The auxiliary device was installed on the hook so that the manhole cover can be lifted. The structure was designed to endure about 300kg of lifting force based on 70% of the yield stress of the hook to perform lifting function. The shape design was performed through the structural analysis using the finite element method. First, the basic design was performed with the simplified 2-dimensional model and the attachment position and shape were designed through the 3-dimensional model. In order to find out the structural problems of the designed shape, the scale downed model was fabricated through 3D printing and confirmed that the lifting function worked. Finally, it was confirmed that both the locking and the average lifting of about 6.1 mm can be done by applying the lifting mechanism through the machining and applying it to the existing locking manhole.