Biased hooking for primitive chain network simulations of block copolymers

  • Published : 2006.06.01

Abstract

Primitive chain network model for block copolymers is used here to simulate molecular dynamics in the entangled state with acceptable computational cost. It was found that i) the hooking procedure rearranging the topology of the entangled network is critical for the equilibrium structure of the system, and ii) simulations accounting for the different chemistry, i.e., with a biased hooking probability based on interaction parameter ${\chi}$ for selection of the hooked partner, generates a reasonable phase diagram.

Keywords

References

  1. Aoyagi, T., T. Honda and M. Doi, 2002, Microstructural study of mechanical properties of the ABA triblock copolymer using self-consistent field and molecular dynamics, J. Chem. Phys. 117, 8153-8161 https://doi.org/10.1063/1.1510728
  2. Doi, M. and J.-I. Takimoto, 2003, Phil. Trans. R. Soc. Lond. A361, 641-650
  3. Fredrickson, G. H., V. Ganesan and F. Drolet, 2002, Field-Theoretic Computer Simulation Methods for Polymers andComplex Fluids, Macromolecules 35, 16-39 https://doi.org/10.1021/ma011515t
  4. Groot, R. D., T. J. Madden and D.J. Tildesley, 1999, On the role of hydrodynamic interactions in block copolymer microphase separation, J. Chem. Phys. 110, 9739-9749 https://doi.org/10.1063/1.478939
  5. Hua, C.C. and J. Schieber, 1998, Segment connectivity, chainlength breathing, segmental stretch and constraint release in reptation models. I. Theory and single-step strain predictions J. Chem. Phys. 109, 10018-10027 https://doi.org/10.1063/1.477670
  6. Likhtman A.E., 2005, Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology and diffusion, Macromolecules 38, 6128-6139 https://doi.org/10.1021/ma050399h
  7. Masubuchi, Y., J.-I. Takimoto, K. Koyama, G. Ianniruberto, G. Marrucci and F. Greco, 2001, Brownian simulations of a network of reptating primitive chains, J. Chem. Phys. 115, 4387- 4394 https://doi.org/10.1063/1.1389858
  8. Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, 2004, Molecular simulations of the long-time behaviour of entangled polymeric liquids by the primitive chain network model Model. Sim. Mat. Sci. Eng. 12, S91-S100 https://doi.org/10.1088/0965-0393/12/3/S03
  9. Masubuchi, Y., G. Ianniruberto, F. Greco and G. Marrucci, 2006, Primitive Chain Network Model for Block Copolymers, J. Non-Crystal. Solids in print
  10. Matsen, M.W. and F.S. Bates, 1996, Unifying Weak- and Strong- Segregation Block Copolymer Theories, Macromolecules 29, 1091-1098 https://doi.org/10.1021/ma951138i
  11. Murat, M., G.S. Grest and K. Kremer, 1999, Statics and Dynamics of Symmetric Diblock Copolymers: A Molecular Dynamics Study, Macromolecules 32, 595-609 https://doi.org/10.1021/ma981512p
  12. Shima, T., H. Kuni, Y. Okabe, M. Doi, X.F. Yuan and T. Kawakatsu, 2003, Self-Consistent-Field Theory of Viscoelastic Behavior of Inhomogeneous Dense Polymer Systems, Macromolecules 36, 9199-9204 https://doi.org/10.1021/ma0205257
  13. Uneyama, T. and M. Doi, 2005, Density Functional Theory for Block Copolymer Melts and Blends, Macromolecules 38, 196- 205 https://doi.org/10.1021/ma049385m
  14. Schieber, J.D., J. Neergaard and S. Gupta, 2003, A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching J. Rheol. 47, 213-233 https://doi.org/10.1122/1.1530155