• Title/Summary/Keyword: Hong Kong procedure

Search Result 76, Processing Time 0.022 seconds

Characteristics of the Chinese Civil Procedure System and Enforcement of Interim Measures in Arbitration and Arbitration Awards in China (중국 민사소송제도의 특색과 중재절차에서의 임시적 처분 및 중재판정의 집행)

  • Jon, Woo-jung
    • Journal of Arbitration Studies
    • /
    • v.29 no.2
    • /
    • pp.161-199
    • /
    • 2019
  • As international trades between Korea and China increase, the number of civil disputes also increases. The civil dispute settlement system and the court system in China are distinctive from those of Korea. China has its own court systems which are characterized by the Chinese Communist System. Due to the influence of the decentralized local autonomy tradition, the case laws of each Province in China are not unified throughout the China. This is partly because only two instances are provided in China, and the parties cannot appeal to the Supreme People's Court of China unless there is a special reason. In Korea, three instances are provided and parties can appeal to the Supreme Court if a party so chooses. In addition, there are many differences in the judicial environment of China compared to Korea. Therefore, if there is a dispute between a Korean party and a Chinese party, arbitration is recommended rather than court litigation. This article examines the points to be considered for interim measures in China during arbitration. Where the seat of arbitration is Korea, interim measures cannot be taken by the order of the Chinese court in the middle of or before arbitration procedures. On the other hand, it is possible to take interim measures through the Chinese court in the middle of or before the arbitration procedure in China or Hong Kong. It also reviews the points to be noted in case of the enforcement of arbitration awards in China where permission from the upper Court is required to revoke or to deny the recognition or enforcement of a foreign-related or foreign arbitration award.

High-yield Purification and Characterization of Recombinant Human Leukotactin-1 in Pichia pastoris

  • Lim, In-Hwan;Lee, Kong-Ju;Lee, Eun-Kyoung;Park, Mu-Rim;Lee, Gue-Wha;Yeup Yoon;Park, Doo-Hong;Jung, Kyung-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The human chemokine, the short version of leukotactin-1(shLkn-1;molecular weight=7.2 kD and 66 amino acids), was expressed and secreted into a culture medium using the me-thylotrophic yeast, Pichia pastoris. The recombinant shLkn-1 was purified from the culture supernatant using a simple two-step procedure consisting of cation exchange and reverse phase chromatography(RPC), in which shLkn-1 was highly purified (99.5%) with a high recovery yield of 82.7%. The C-terminal truncated derivative of shLkn-1 was found in the supernatant and was separated by RPC. The physicochemical properties of the purified shLkn-1 were verified to be the same as expected. The biological activity of the purified recombinant shLkn-1 was also quantified using a chemotaxis assay. It was observed that the recombinant shLkn-1 had the maximum migration activity at a concentration of 10nM, as potent as MIP-1${\alpha}$.

Updating finite element model using dynamic perturbation method and regularization algorithm

  • Chen, Hua-Peng;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.427-442
    • /
    • 2012
  • An effective approach for updating finite element model is presented which can provide reliable estimates for structural updating parameters from identified operational modal data. On the basis of the dynamic perturbation method, an exact relationship between the perturbation of structural parameters such as stiffness change and the modal properties of the tested structure is developed. An iterative solution procedure is then provided to solve for the structural updating parameters that characterise the modifications of structural parameters at element level, giving optimised solutions in the least squares sense without requiring an optimisation method. A regularization algorithm based on the Tikhonov solution incorporating the generalised cross-validation method is employed to reduce the influence of measurement errors in vibration modal data and then to produce stable and reasonable solutions for the structural updating parameters. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is employed to demonstrate the effectiveness and applicability of the proposed model updating technique. The results from the benchmark problem studies show that the proposed technique can successfully adjust the reduced finite element model of the structure using only limited number of frequencies identified from the recorded ambient vibration measurements.

Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures

  • Katafygiotis, Lambros;Moan, Torgeir;Cheungt, Sai Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.347-363
    • /
    • 2007
  • A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear failure domain in the case where the original nonlinear reliability problem involves multiple objectives rather than a single objective. Each reliability objective is assumed to correspond to a particular response quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds with a modified subset simulation procedure where the first step involves the direct simulation of samples in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The method is demonstrated through such a numerical example involving two reliability objectives and a very large number of random variables. It is found that ADM is very efficient and offers drastic improvements over standard subset simulation, especially when one deals with low probability failure events.

Progressive damage detection of thin plate structures using wavelet finite element model updating

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.277-290
    • /
    • 2018
  • In this paper, wavelet finite element model (WFEM) updating technique is employed to detect sub-element damage in thin plate structures progressively. The procedure of WFEM-based detection method, which can detect sub-element damage gradually, is established. This method involves the optimization of an objective function that combines frequencies and modal assurance criteria (MAC). During the damage detection process, the scales of wavelet elements in the concerned regions are adaptively enhanced or reduced to remain compatible with the gradually identified damage scenarios, while the modal properties from the tests remains the same, i.e., no measurement point replacement or addition are needed. Numerical and experimental examples were conducted to examine the effectiveness of the proposed method. A scanning Doppler laser vibrometer system was employed to measure the plate mode shapes in the experimental study. The results indicate that the proposed method can detect structural damage with satisfactory accuracy by using minimal degrees-of-freedoms (DOFs) in the model and minimal updating parameters in optimization.

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

Technological and economic study of ship recycling in Egypt

  • Welaya, Yousri M.A.;Abdel Naby, Maged M.;Tadros, Mina Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.362-373
    • /
    • 2012
  • The ship recycling industry is growing rapidly. It is estimated that the International Maritime Organization's (IMO) decision to phase-out single hull tankers by 2015 will result in hundreds of ships requiring disposal. At present, the ship recycling industry is predominantly based in South Asia. Due to the bad practice of current scrapping procedure, the paper will highlight the harm occurring to health, safety and environment. The efforts of the Marine Environment Protection Committee (MEPC) which led to the signing of the Hong Kong International Convention are also reviewed. The criteria and standards required to reduce the risk and damage to the environment are discussed and a proposed plan for the safe scrapping of ships is then presented. A technological and economic study for the ship recycling in Egypt is carried out as a case study. This includes the ship recycling facility size and layout. The equipment and staff required to operate the facility are also evaluated. A cost analysis is then carried out. This includes site development, human resources, machineries and equipment. A fuzzy logic approach is used to assess the benefits of the ship breaking yard. The use of the fuzzy logic approach is found suitable to make decisions for the ship breaking industry. Based on given constraints, the proposed model has proved capable of assessing the profit and the internal rate of return.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

Structural damage and force identification under moving load

  • Zhu, Hongping;Mao, Ling;Weng, Shun;Xia, Yong
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.261-276
    • /
    • 2015
  • Structural damage and moving load identification are the two aspects of structural system identification. However, they universally coexist in the damaged structures subject to unknown moving load. This paper proposed a dynamic response sensitivity-based model updating method to simultaneously identify the structural damage and moving force. The moving force which is equivalent as the nodal force of the structure can be expressed as a series of orthogonal polynomial. Based on the system Markov parameters by the state space method, the dynamic response and the dynamic response derivatives with respect to the force parameters and elemental variations are analytically derived. Afterwards, the damage and force parameters are obtained by minimizing the difference between measured and analytical response in the sensitivity-based updating procedure. A numerical example for a simply supported beam under the moving load is employed to verify the accuracy of the proposed method.

Evaluation of vertical dynamic characteristics of cantilevered tall structures

  • Li, Q.S.;Xu, J.Y.;Li, G.Q.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.357-372
    • /
    • 2001
  • In this paper, cantilevered tall structures are treated as cantilever bars with varying cross-section for the analysis of their free longitudinal (or axial) vibrations. Using appropriate transformations, exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a one step non-uniform bar are derived by selecting suitable expressions, such as exponential functions, for the distributions of mass and axial stiffness. The frequency equation of a multi-step bar is established using the approach that combines the transfer matrix procedure or the recurrence formula and the closed-form solutions of one step bars, leading to a single frequency equation for any number of steps. The Ritz method is also applied to determine the natural frequencies and mode shapes in the vertical direction for cantilevered tall structures with variably distributed stiffness and mass. The formulae proposed in this paper are simple and convenient for engineering applications. Numerical example shows that the fundamental longitudinal natural frequency and mode shape of a 27-storey building determined by the proposed methods are in good agreement with the corresponding measured data. It is also shown that the selected expressions are suitable for describing the distributions of axial stiffness and mass of typical tall buildings.