• Title/Summary/Keyword: Homogeneous solid solution

Search Result 49, Processing Time 0.032 seconds

Growth of $30BaTiO_3$.$70NaNbO_3$ Solid Solution Single Crystal ($30BaTiO_3$.$70NaNbO_3$ 고용체 단결정 육성)

  • 김호건;류일환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.20-29
    • /
    • 1992
  • In $BaTiO_3-NaNbO_3$ system, complete series of solid solution occurs and $30BaTiO_3{cdot}70NaNbO_3$ composition is congruently melted. Single crystals of $30BaTiO_3{cdot}70NaNbO_3$, composition were grown by Czochralski method in this investigation. Single crystals with dimensions of 15 - 20mm diameter and 20 - 30mm length, were grown at the pulling rate of 2.0mm/h and the rotation rate of 5.0 -l0rpm. Core structures were found in the grown crystals and inclusions, cellular boundaries existed at the core region. The origin of core occuring was unstability of the crystal- melt interface due to the poor conductivity of latent heat through the crystal during the crystal growing process. Obtained crystals were optically homogeneous except the core region and showed high optical transmittance in the visible range.

  • PDF

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Effects of Powder Property and Sintering Atmosphere on the Properties of Burnable Absorber Fuel : I. $UO_2-Gd_2O_3$ Fuel

  • K. W. Song;Kim, K. S.;H. S. Yoo;Kim, J. H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.171-176
    • /
    • 1997
  • UO$_2$-Gd$_2$O$_3$fuel has been sintered to study the effect of powder property and sintering atmospheres on densification and microstructure. Three types of powders have been used; AUC-UO$_2$ powder and ADU-UO$_2$ powder were mixed with Gd$_2$O$_3$ Powder, and co-milled AUC-UO$_2$ and Gd$_2$O$_3$ powder. UO$_2$-(2, 5, 10)wt% Gd$_2$O$_3$pellets have been sintered at 168$0^{\circ}C$ for 4 hours in the mixture of H$_2$ and $CO_2$ gases, of which oxygen potential has been controlled by the ratio of $CO_2$ to H$_2$ gas. Densities of UO$_2$-Gd$_2$O$_3$ fuel pellets are quite dependent on powder types, and UO$_2$-Gd$_2$O$_3$ fuel using co-milled UO$_2$ powder yields the highest density. A long range homogeneity of Gd is determined by powder mixing. As the oxygen potential of sintered atmosphere increases, the sintered densities of UO$_2$-Gd$_2$O$_3$ pellets decrease but grain size increases. In addition, (U, Gd)O$_2$ solid solution becomes more homogeneous. The UO$_2$-Gd$_2$O$_3$fuel having adequate density and homogeneous microstructure can be fabricated by co-milling powder and by high oxygen potential.

  • PDF

High Temperature Electrical Conductivity of Perovskite La0.98Sr0.02MnO3 (페로프스카이트 $La_{0.98}Sr_{0.02}MnO_3$의 고온전기특성)

  • 김명철;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.900-904
    • /
    • 1992
  • High temperature electrical conductivity was measured for perovskite La0.98Sr0.02MnO3 at 200~130$0^{\circ}C$ as a function of Po2 and 1/T. Perovskite La1-xSrxMnO3 system is the typical oxygen electrode in solid oxide fuel cell (SOFC). Acetate precursors were used for the preparation of mixed water solution and the calcined powders were reacted with Na2CO3 flux in order to obtain highly reactive powders of perovskite La0.98Sr0.02MnO3. The relative density was greatly increased above 90% because of the homogeneous sintering. From the conductivity ($\sigma$)-temperature and conductivity-Po2 at constant temperature, the defect structure of La0.98Sr0.02MnO3 was discussed. From the slope of 1n($\sigma$) vs 1/T, the activation energy of 0.069 and 0.108eV were evaluated for above 40$0^{\circ}C$, respectively. From the relationship between $\sigma$ and Po2, it was found that the decomposition of La0.98Sr0.02MnO3 was occurred at 10-15.5 atm(97$0^{\circ}C$) and 10-11 atm(125$0^{\circ}C$). It is supposed that the improvement of p-type conductivity may be leaded by the increase of Mn4+ concentration through the substitution of divalent/monovalent cations for La site in LaMnO3.

  • PDF

Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow

  • Hosseini, Mohammad;Arani, Ali Ghorbanpour;Karamizadeh, Mohammad Reza;Afshari, Hassan;Niknejad, Shahriar
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.457-469
    • /
    • 2019
  • In this paper, a numerical solution is presented for supersonic flutter analysis of cantilever non-symmetric functionally graded (FG) sandwich plates. The plate is considered to be composed of two different functionally graded face sheets and an isotropic homogeneous core made of ceramic. Based on the first order shear deformation theory (FSDT) and linear piston theory, the set of governing equations and boundary conditions are derived. Dimensionless form of the governing equations and boundary conditions are derived and solved numerically using generalized differential quadrature method (GDQM) and critical velocity and flutter frequencies are calculated. For various values of the yaw angle, effect of different parameters like aspect ratio, thickness of the plate, power law indices and thickness of the core on the flutter boundaries are investigated. Numerical examples show that wings and tail fins with larger length and shorter width are more stable in supersonic flights. It is concluded for FG sandwich plates made of Al-Al2O3 that increase in volume fraction of ceramic (Al2O3) increases aeroelastic stability of the plate. Presented study confirms that improvement of aeroelastic behavior and weight of wings and tail fins of aircrafts are not consistent items. It is shown that value of the critical yaw angle depends on aspect ratio of the plate and other parameters including thickness and variation of properties have no considerable effect on it. Results of this paper can be used in design and analysis of wing and tail fin of supersonic airplanes.

Preparation of Ni-GDC Powders by the Solution Reduction Method Using Hydrazine and Its Electrical Properties (하이드라진을 이용한 용액환원법에 의한 Ni-GDC 미분말 합성과 전기적 특성)

  • Kim, Sun-Jung;Kim, Kang-Min;Cho, Pyeong-Seok;Cho, Yoon-Ho;Lee, Choong-Yong;Park, Seung-Young;Kang, Yun-Chan;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.660-663
    • /
    • 2008
  • Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at $1400^{\circ}C$ for 2 h and then reduced at $800^{\circ}C$ for 24 h in 3% $H_2$. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.

Free vibration characteristics of three-phases functionally graded sandwich plates using novel nth-order shear deformation theory

  • Pham Van Vinh;Le Quang Huy;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • In this study, the authors investigate the free vibration behavior of three-phases functionally graded sandwich plates using a novel nth-order shear deformation theory. These plates are composed of a homogeneous core and two face-sheet layers made of different functionally graded materials. This is the novel type of the sandwich structures that can be applied in many fields of mechanical engineering and industrial. The proposed theory only requires four unknown displacement functions, and the transverse displacement does not need to be separated into bending and shear parts, simplifying the theory. One noteworthy feature of the proposed theory is its ability to capture the parabolic distribution of transverse shear strains and stresses throughout the plate's thickness while ensuring zero values on the two free surfaces. By eliminating the need for shear correction factors, the theory further enhances computational efficiency. Equations of motion are established using Hamilton's principle and solved via Navier's solution. The accuracy and efficiency of the proposed theory are verified by comparing results with available solutions. The authors then use the proposed theory to investigate the free vibration characteristics of three-phases functionally graded sandwich plates, considering the effects of parameters such as aspect ratio, side-to-thickness ratio, skin-core-skin thicknesses, and power-law indexes. Through careful analysis of the free vibration behavior of three-phases functionally graded sandwich plates, the work highlighted the significant roles played by individual material ingredients in influencing their frequencies.

Influence of Bacterial Attachment on Arsenic Bioleaching from Mine Tailings: Dependency on the Ratio of Bacteria-Solid Substrate (광물찌꺼기 내 비소의 미생물 침출 시 박테리아 흡착 영향: 박테리아와 고체 기질 비율에 관한 연구)

  • Park, Jeonghyun;Silva, Rene A.;Choi, Sowon;Ilyas, Sadia;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • The present study investigates the bioleaching efficiencies of arsenic via contact and non-contact mechanisms. The attachment of Acidithiobacillus ferrooxidans was restricted by a partition system comprising a semi-permeable membrane with a molecular weight cutoff of 12-14 kDa. The results were compared for two arsenic concentrations in the system (1.0% and 0.5% w/v) to maintain a homogeneous system. The overall bacterial performance was monitored by comparing total arsenic and iron concentrations, Fe ion speciation, pH, and solution redox potentials in flask bioleaching experiments over a period of 10 d. Our results indicated that bacterial attachment could increase arsenic extraction efficiency from 20.0% to 44.9% at 1.0 % solid concentrations. These findings suggest that the bacterial contact mechanism greatly influences arsenic bioleaching from mine tailings. Therefore, systems involving two-step or non-contact bioleaching are less effective than those involving one-step or contact bioleaching for the efficient extraction of arsenic from mine tailings.

Phase formation in mechanically Nb-Sn powders (기계적합금화 방법에 의한 Nb-Sn 상형성)

  • 정인화;장석원;이성만;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.463-467
    • /
    • 1998
  • The microstructure evolution during mechanical alloying (MA) of Nb and Sn powder; of average composition $Nb_3Sn$, has been investigated by X-ray diffraction (XRD). The structural development with milling time depends on the ball size for a given powder/ball ratio. Using a larger ball of 9.5 mm diameter, the elemental powders initially alloy mechanically to form an A15 structure phase, and then amorphized with continued milling. However, in case of milling with a smaller ball of 3.968 mm diameter, an amorphous phase is first formed. These results can be understood by considering the dependence of the milling energy on the ball size. The homogeneous stoichiometric $Nb_3Sn$ phase could be easily obtained by heat treatment of supersaturated solid solution produced by MA. Heat treatment of an amorphous formed by MA resulted in the mixture of the $Nb_3Sn$ and $Nb_6Sn_5$phases.

  • PDF