Browse > Article
http://dx.doi.org/10.12989/was.2019.29.6.457

Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow  

Hosseini, Mohammad (Department of Mechanical Engineering, Sirjan University of Technology)
Arani, Ali Ghorbanpour (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
Karamizadeh, Mohammad Reza (Department of Mechanical Engineering, Sirjan University of Technology)
Afshari, Hassan (Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University)
Niknejad, Shahriar (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
Publication Information
Wind and Structures / v.29, no.6, 2019 , pp. 457-469 More about this Journal
Abstract
In this paper, a numerical solution is presented for supersonic flutter analysis of cantilever non-symmetric functionally graded (FG) sandwich plates. The plate is considered to be composed of two different functionally graded face sheets and an isotropic homogeneous core made of ceramic. Based on the first order shear deformation theory (FSDT) and linear piston theory, the set of governing equations and boundary conditions are derived. Dimensionless form of the governing equations and boundary conditions are derived and solved numerically using generalized differential quadrature method (GDQM) and critical velocity and flutter frequencies are calculated. For various values of the yaw angle, effect of different parameters like aspect ratio, thickness of the plate, power law indices and thickness of the core on the flutter boundaries are investigated. Numerical examples show that wings and tail fins with larger length and shorter width are more stable in supersonic flights. It is concluded for FG sandwich plates made of Al-Al2O3 that increase in volume fraction of ceramic (Al2O3) increases aeroelastic stability of the plate. Presented study confirms that improvement of aeroelastic behavior and weight of wings and tail fins of aircrafts are not consistent items. It is shown that value of the critical yaw angle depends on aspect ratio of the plate and other parameters including thickness and variation of properties have no considerable effect on it. Results of this paper can be used in design and analysis of wing and tail fin of supersonic airplanes.
Keywords
aeroelasticity; flutter; yawed flow; cantilever plate; sandwich plate;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Han, Y., Liu, S. and Cai, C. (2015), "Flutter stability of a longspan suspension bridge during erection", Wind Struct., 21(1), 41-61. https://doi.org/10.12989/was.2015.21.1.041.   DOI
2 Hasheminejad, S.M., Nezami, M. and Aryaee Panah, M. (2013), "Flutter suppression of an elastically supported plate with electro-rheological fluid core under yawed supersonic flows", Int. J. Struct. Stability and Dynamics. 13(1), 1250073. https://doi.org/10.1142/S0219455412500733.   DOI
3 Hatami-Marbini, H. and Rohanifar, M. (2019), "Stiffness of bimodulus hexagonal and diamond honeycombs", J. Mech. Sci. Technol., 33(4), 1703-1709. https://doi.org/10.1007/s12206-019-0322-1.   DOI
4 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.   DOI
5 Hosseini, M., Fazelzadeh, S. and Marzocca, P. (2011), "Chaotic and bifurcation dynamic behavior of functionally graded curved panels under aero-thermal loads", Int. J. Bifurcation Chaos. 21(3), 931-954. https://doi.org/10.1142/S0218127411028738.   DOI
6 Kaneko, T. (1975), "On Timoshenko's correction for shear in vibrating beams", J. Phys. D: Appl. Phys., 8(16), 1927.   DOI
7 Kouchakzadeh, M., Rasekh, M. and Haddadpour, H. (2010), "Panel flutter analysis of general laminated composite plates", Compos. Struct., 92(12), 2906-2915. https://doi.org/10.1016/j.compstruct.2010.05.001.   DOI
8 Meijer, M.C. and Dala, L. (2015), "Zeroth-order flutter prediction for cantilevered plates in supersonic flow", J. Fluids Struct., 57 196-205. https://doi.org/10.1016/j.jfluidstructs.2015.06.018.   DOI
9 Kuo, S.Y. (2011), "Flutter of rectangular composite plates with variable fiber pacing", Compos. Struct., 93(10), 2533-2540. https://doi.org/10.1016/j.compstruct.2011.04.015.   DOI
10 Mahmoudkhani, S., Haddadpour, H. and Navazi, H. (2010), "Supersonic flutter prediction of functionally graded conical shells", Compos. Struct., 92(2), 377-386. https://doi.org/10.1016/j.compstruct.2009.08.018.   DOI
11 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18 31.   DOI
12 Navazi, H. and Haddadpour, H. (2011), "Nonlinear aerothermoelastic analysis of homogeneous and functionally graded plates in supersonic airflow using coupled models", Compos. Struct., 93(10), 2554-2565. https://doi.org/10.1016/j.compstruct.2011.04.018.   DOI
13 Hosseini, M. and Fazelzadeh, S. (2010), "Aerothermoelastic postcritical and vibration analysis of temperature-dependent functionally graded panels", J. Therm. Stresses, 33(12), 1188-1212. https://doi.org/10.1080/01495739.2010.510754.   DOI
14 Vedeneev, V.V. (2012), "Panel flutter at low supersonic speeds", J. Fluid. Struct., 29, 79-96. https://doi.org/10.1016/j.jfluidstructs.2011.12.011.   DOI
15 Torabi, K. and Afshari, H. (2017), "Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness", Eng. Solid Mech., 5(1), 71-92.   DOI
16 Torabi, K., Afshari, H. and Aboutalebi, F.H. (2017), "Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates", J. Sandwich Struct. Mater., 1099636217728746.
17 Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.   DOI
18 Vedeneev, V.V. (2013), "Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds", J. Fluid. Struct., 40, 366-372. https://doi.org/10.1016/j.jfluidstructs.2013.04.004.   DOI
19 Vedeneev, V.V., Guvernyuk, S.V., Zubkov, A.F. and Kolotnikov, M.E. (2010), "Experimental observation of single mode panel flutter in supersonic gas flow", J. Fluid. Struct., 26(5), 764-779. https://doi.org/10.1016/j.jfluidstructs.2010.04.004.   DOI
20 Wang, K., Liao, H. and Li, M. (2016), "Flutter suppression of long-span suspension bridge with truss girder", Wind Struct., 23(5), 405-420. https://doi.org/10.12989/was.2016.23.5.405.   DOI
21 Shin, W.H., Oh, I.K., Han, J.H. and Lee, I. (2006), "Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments", J. Sound Vib., 296(1-2), 99-116. https://doi.org/10.1016/j.jsv.2006.01.068.   DOI
22 Torabi, K. and Afshari, H. (2017), "Optimization of flutter boundaries of cantilevered trapezoidal functionally graded sandwich plates", J. Sandwich Struct. Mater., 1099636217697492. https://doi.org/10.1177/1099636217697492.
23 Afshari, H. and Torabi, K. (2017), "A parametric study on flutter analysis of cantilevered trapezoidal FG sandwich plates", Amirkabir J. Sci. Res. Mech. Eng., 1(2), 191-210.
24 Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Review., 49(1), 1-28. https://doi.org/10.1115/1.3101882.   DOI
25 Chowdary, T., Sinha, P. and Parthan, S. (1996), "Finite element flutter analysis of composite skew panels", Comput. Struct., 58(3), 613-620. https://doi.org/10.1016/0045-7949(95)00153-8.   DOI
26 Cunha-Filho, A., De Lima, A., Donadon, M. and Leao, L. (2016), "Flutter suppression of plates using passive constrained viscoelastic layers", Mech. Syst. Signal Pr., 79, 99-111. https://doi.org/10.1016/j.ymssp.2016.02.025.   DOI
27 Du, H., Lim, M. and Lin, R. (1994), "Application of generalized differential quadrature method to structural problems", Int. J. Numer. Method. Eng., 37(11), 1881-1896. https://doi.org/10.1002/nme.1620371107.   DOI
28 Eltaher, M., Alshorbagy, A. and Mahmoud, F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.   DOI
29 Prakash, T. and Ganapathi, M. (2006), "Supersonic flutter characteristics of functionally graded flat panels including thermal effects", Compos. Struct., 72(1), 10-18. https://doi.org/10.1016/j.compstruct.2004.10.007.   DOI
30 Sankar, A., Natarajan, S., Zineb, T.B. and Ganapathi, M. (2015), "Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced facesheets using higherorder structural theory", Compos. Struct., 127, 340-355. https://doi.org/10.1016/j.compstruct.2015.02.047.   DOI
31 Singha, M. and Mandal, M. (2008), "Supersonic flutter characteristics of composite cylindrical panels", Compos. Struct., 82(2), 295-301. https://doi.org/10.1016/j.compstruct.2007.01.007.   DOI
32 Singha, M.K. and Ganapathi, M. (2005), "A parametric study on supersonic flutter behavior of laminated composite skew flat panels", Compos. Struct., 69(1), 55-63. https://doi.org/10.1016/j.compstruct.2004.04.018.   DOI
33 Srinivasan, R. and Babu, B. (1985), "Flutter analysis of cantilevered quadrilateral plates", J. Sound Vib., 98(1), 45-53. https://doi.org/10.1016/0022-460X(85)90401-8.   DOI
34 Tang, H., Li, Y., Chen, X., Shum, K.M. and Liao, H. (2017), "Flutter performance of central-slotted plate at large angles of attack", Wind Struct., 24(5), 447-464. https://doi.org/10.12989/was.2017.24.5.447.   DOI
35 Haddadpour, H., Mahmoudkhani, S. and Navazi, H. (2008), "Supersonic flutter prediction of functionally graded cylindrical shells", Compos. Struct., 83(4), 391-398. https://doi.org/10.1016/j.compstruct.2007.05.011.   DOI
36 Torabi, K. and Afshari, H. (2016), "Generalized differential quadrature method for vibration analysis of cantilever trapezoidal FG thick plate", J. Solid Mech., 8(1), 184-203.
37 Torabi, K. and Afshari, H. (2017), "Optimization for flutter boundaries of cantilevered trapezoidal thick plates", J. Brazilian Soc. Mech. Sci. Eng., 39(5), 1545-1561.   DOI
38 Ghorbanpour Arani, A., Kiani, F. and Afshari, H. (2019), "Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow", Int. J. Appl. Mech.. 11(6), 1950052. https://doi.org/10.1142/S1758825119500522.   DOI
39 Ghorbanpour Arani, A., Kiani, F. and Afshari, H. (2019), "Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels", J. Sandwich Struct. Mater., 1099636219830787.
40 Grover, N., Singh, B. and Maiti, D. (2016), "An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates", Aerospa. Sci. Technol., 52, 41-51. https://doi.org/10.1016/j.ast.2016.02.017.   DOI