Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.12.660

Preparation of Ni-GDC Powders by the Solution Reduction Method Using Hydrazine and Its Electrical Properties  

Kim, Sun-Jung (Department of Materials Science and Engineering, Korea University)
Kim, Kang-Min (Department of Materials Science and Engineering, Korea University)
Cho, Pyeong-Seok (Department of Materials Science and Engineering, Korea University)
Cho, Yoon-Ho (Department of Materials Science and Engineering, Korea University)
Lee, Choong-Yong (Department of Materials Science and Engineering, Korea University)
Park, Seung-Young (Department of Materials Science and Engineering, Korea University)
Kang, Yun-Chan (Department of Chemical Engineering, Konkuk University)
Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.18, no.12, 2008 , pp. 660-663 More about this Journal
Abstract
Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at $1400^{\circ}C$ for 2 h and then reduced at $800^{\circ}C$ for 24 h in 3% $H_2$. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.
Keywords
SOFC; anode; hydrazine reduction; Ni-GDC;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 N. P. Brandon, S. Skinner, and B. C. H. Steele, Annu. Rev. Mater. Res., 33, 183 (2003)   DOI   ScienceOn
2 R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, Adv. Mater., 12(19) 1465 (2000)   DOI   ScienceOn
3 B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001)   DOI   ScienceOn
4 T. Setoguchi, K. Okamoto, K. Eguchi and H. Arai, J. Electrochem. Soc., 139(10), 2875 (1992)   DOI
5 J. -H. Lee, H. Moon, H. -W. Lee, J. Kim, J. -D. Kim, K. -H. Yoon, Solid State Ionics, 148, 15 (2002)   DOI   ScienceOn
6 W. Z. Zhu, S. C. Deevi, Mater. Sci. Eng. A, 362, 228 (2003)   DOI   ScienceOn
7 E. P. Murray, T. Tsai, and S.A. Barnett, Nature, 400, 649 (1999)   DOI   ScienceOn
8 A. Muramatsu and T. Sugimoto, J. Colloid Interface Sci., 189, 167 (1997)   DOI   ScienceOn
9 J. -Y. Choi,, Y. -K. Lee, S. -M. Yoon, H. C. Lee, B. -K. Kim, J. M. Kim, K. -M. Kim, and J. -H. Lee, J. Am. Ceram. Soc., 88, 3020 (2005)   DOI   ScienceOn
10 S. K. Pratihar, A. D. Sharma, R. N. Basu, and H. S. Maiti, J. Power Source, 129, 138 (2004)   DOI   ScienceOn
11 Y. -H. Huang, R. I. Dass, Z. -L. Xing, and J. B. Goodenough, Science, 312, 254 (2006)   DOI   ScienceOn
12 S. P. Jiang and S. H. Chan, J. Mater. Sci., 39, 4405 (2004)   DOI   ScienceOn
13 F. Tietz, F. J. Dias, D. Simwonis, and D. Stöver, J. Euro. Ceram. Soc., 20, 1023 (2000)   DOI   ScienceOn
14 H. Koide, Y. Someya, T. Yoshida, T. Maruyama, Solid State Ionics, 132, 253 (2000)   DOI   ScienceOn
15 T. Sugimoto, X. Zhou, and A. Muramatsu, J. Colloid Interface Sci., 259, 43 (2003)   DOI   ScienceOn
16 M. Marinsek, K. Zupan, and J. Macek, J. Power Source, 86, 383 (2000)   DOI   ScienceOn