DOI QR코드

DOI QR Code

Influence of Bacterial Attachment on Arsenic Bioleaching from Mine Tailings: Dependency on the Ratio of Bacteria-Solid Substrate

광물찌꺼기 내 비소의 미생물 침출 시 박테리아 흡착 영향: 박테리아와 고체 기질 비율에 관한 연구

  • Park, Jeonghyun (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Silva, Rene A. (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Choi, Sowon (Department of Environment and Energy, Jeonbuk National University) ;
  • Ilyas, Sadia (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Kim, Hyunjung (Department of Mineral Resources and Energy Engineering, Jeonbuk National University)
  • 박정현 (전북대학교 자원.에너지공학과) ;
  • ;
  • 최소원 (전북대학교 환경에너지융합학과) ;
  • ;
  • 김현중 (전북대학교 자원.에너지공학과)
  • Received : 2020.12.21
  • Accepted : 2021.04.26
  • Published : 2021.06.30

Abstract

The present study investigates the bioleaching efficiencies of arsenic via contact and non-contact mechanisms. The attachment of Acidithiobacillus ferrooxidans was restricted by a partition system comprising a semi-permeable membrane with a molecular weight cutoff of 12-14 kDa. The results were compared for two arsenic concentrations in the system (1.0% and 0.5% w/v) to maintain a homogeneous system. The overall bacterial performance was monitored by comparing total arsenic and iron concentrations, Fe ion speciation, pH, and solution redox potentials in flask bioleaching experiments over a period of 10 d. Our results indicated that bacterial attachment could increase arsenic extraction efficiency from 20.0% to 44.9% at 1.0 % solid concentrations. These findings suggest that the bacterial contact mechanism greatly influences arsenic bioleaching from mine tailings. Therefore, systems involving two-step or non-contact bioleaching are less effective than those involving one-step or contact bioleaching for the efficient extraction of arsenic from mine tailings.

본 연구는 미생물의 접촉 및 비접촉 매커니즘에 따른 비소의 미생물 침출 효율을 보여준다. 12-14 kDa의 반투과성막으로 구성된 분리시스템에서 Acidithiobacillus ferroxidans와 광물찌꺼기의 흡착을 제어하며 접촉 및 비접촉 시스템을 구분하였으며 1.0% 및 0.5% w/v의 두 가지 광액 농도에서 침출효율을 비교하였다. 회분식 미생물 침출 실험을 10일간 수행하면서 비소와 철의 총 농도, 철 이온종 변화, pH, 산화환원전위를 비교하며 박테리아 활동을 확인하였다. 높은 광액 농도인 1.0%에서 박테리아의 흡착에 의해 비소 침출 효율이 20.0%에서 44.9%로 증가하였다. 이러한 결과는 박테리아의 접촉 메커니즘이 광물찌꺼기 내 비소 침출에 큰 영향을 준다는 것을 보여준다. 따라서, 광물찌꺼기 내 비소 제거는 2단계 또는 비접촉 미생물 침출 방법이 1단계 또는 접촉 미생물 침출 방법보다 효율적이지 않다는 것을 보여주었다.

Keywords

Acknowledgement

This research was supported by the Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (grant number : 2019H1D3A2A02101993).

References

  1. Silva, Rene A, Danilo Borja, Gukhwa Hwang, et al., 2017 : Analysis of the Effects of Natural Organic Matter in Zinc Beneficiation, Journal of Cleaner Production, 168, pp.814-22. https://doi.org/10.1016/j.jclepro.2017.09.011
  2. Holmes, David S., 2008 : Review of International Bio-hydrometallurgy Symposium, Frankfurt, 2007, Hydrometallurgy, 92(1-2), pp.69-72. https://doi.org/10.1016/j.hydromet.2008.01.003
  3. Borja Danilo, Nguyen Kim Anh, Silva R. A., et al., 2016 : Experiences and Future Challenges of Bioleaching Research in South Korea, Minerals, 6(4), p.128. https://doi.org/10.3390/min6040128
  4. Yin Shenghua, Leiming Wang, Eugie Kabwe, et al., 2018 : Copper Bioleaching in China: Review and Prospect, Minerals, 8(2), p.32. https://doi.org/10.3390/min8020032
  5. Watling, H.R., 2006 : The Bioleaching of Sulphide Minerals with Emphasis on Copper Sulphides - A Review, Hydrometallurgy, 84(1-2), pp.81-108 https://doi.org/10.1016/j.hydromet.2006.05.001
  6. Donati, Edgardo R, and Wolfgang Sand, 2007 : Microbial Processing of Metal Sulfides. Springer.
  7. Park, Jeonghyun, Yosep Han, Eunseong Lee, et al., 2014 : Bioleaching of Highly Concentrated Arsenic Mine Tailings by Acidithiobacillus Ferrooxidans, Separation and Purification Technology, 133, pp.291-96. https://doi.org/10.1016/j.seppur.2014.06.054
  8. Dastidar, Manisha G, Anushree Malik, and Pradip K Roychoudhury, 2000 : Biodesulphurization of Indian (Assam) Coal Using Thiobacillus Ferrooxidans (ATCC 13984), Energy Conversion and Management, 41(4), pp.375-88. https://doi.org/10.1016/S0196-8904(99)00085-0
  9. d'Hugues, P., P. Cezac, T. Cabral, et al. 1997 : Bioleaching of a Cobaltiferous Pyrite: A Continuous Laboratory-Scale Study at High Solids Concentration, Minerals Engineering, 10(5), pp.507-27. https://doi.org/10.1016/S0892-6875(97)00029-0
  10. Mohseni, S., A. Marzban, S. Sepehr, et al., 2011 : Investigation of Some Heavy Metals Toxicity for Indigenous Acidithiobacillus Ferrooxidans Isolated from Sarcheshmeh Copper Mine, Jundishapur Journal of Microbiology, 4(3), pp.159-66.
  11. Munoz, J.A., F. Gonzalez, M.L. Blazquez, et al., 1995 : A Study of the Bioleaching of a Spanish Uranium Ore. Part I: A Review of the Bacterial Leaching in the Treatment of Uranium Ores, Hydrometallurgy, 38(1), pp.39-57. https://doi.org/10.1016/0304-386X(94)00039-6
  12. Bayard, Remy, Vincent Chatain, Celine Gachet, et al., 2006 : Mobilisation of Arsenic from a Mining Soil in Batch Slurry Experiments under Bio-Oxidative Conditions, Water Research 40(6), pp.1240-48. https://doi.org/10.1016/j.watres.2006.01.025
  13. Lee, Eunseong, Yosep Han, Jeonghyun Park, et al., 2015 : Bioleaching of Arsenic from Highly Contaminated Mine Tailings Using Acidithiobacillus Thiooxidans, Journal of Environmental Management, 147, pp.124-31. https://doi.org/10.1016/j.jenvman.2014.08.019
  14. Lilova, K., and D. Karamanev, 2005 : Direct Oxidation of Copper Sulfide by a Biofilm of Acidithiobacillus Ferrooxidans, Hydrometallurgy, 80(3), pp.147-54. https://doi.org/10.1016/j.hydromet.2004.12.010
  15. Fowler, T A, and F K Crundwell, 1998 : Leaching of Zinc Sulfide by Thiobacillus Ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism, Applied and Environmental Microbiology, 64(10), pp.3570-75. https://doi.org/10.1128/aem.64.10.3570-3575.1998
  16. Xin, B P, D Zhang, X Zhang, et al., 2009 : Bioleaching Mechanism of Co and Li from Spent Lithium-Ion Battery by the Mixed Culture of Acidophilic Sulfur-Oxidizing and Iron-Oxidizing Bacteria, Bioresource Technology, 100(24), pp.6163-69. https://doi.org/10.1016/j.biortech.2009.06.086
  17. Bryan, C G, E L Watkin, T J McCredden, et al. 2015 : The Use of Pyrite as a Source of Lixiviant in the Bioleaching of Electronic Waste, Hydrometallurgy, 152, pp.33-43. https://doi.org/10.1016/j.hydromet.2014.12.004
  18. Bas, Ahmet Deniz, Haci Deveci, and Ersin Y Yazici, 2013 : Bioleaching of Copper from Low Grade Scrap TV Circuit Boards Using Mesophilic Bacteria, Hydrometallurgy, 138, pp.65-70. https://doi.org/10.1016/j.hydromet.2013.06.015
  19. Ilyas, S, M A Anwar, S B Niazi, et al., 2007 : Bioleaching of Metals from Electronic Scrap by Moderately Thermophilic Acidophilic Bacteria, Hydrometallurgy, 88(1-4), pp.180-88. https://doi.org/10.1016/j.hydromet.2007.04.007
  20. Hong, Jeongsik, Rene A Silva, Jeonghyun Park, et al., 2016 : Adaptation of a Mixed Culture of Acidophiles for a Tank Biooxidation of Refractory Gold Concentrates Containing a High Concentration of Arsenic, Journal of Bioscience and Bioengineering, 121(5), pp.536-42. https://doi.org/10.1016/j.jbiosc.2015.09.009
  21. Silva, Rene A, Jeonghyun Park, Eunseong Lee, et al., 2015 : Influence of Bacterial Adhesion on Copper Extraction from Printed Circuit Boards, Separation and Purification Technology, 143, pp.169-76. https://doi.org/10.1016/j.seppur.2015.01.038
  22. Chen, Y M, A H Lu, Y Li, et al., 2011 : Naturally Occurring Sphalerite As a Novel Cost-Effective Photocatalyst for Bacterial Disinfection under Visible Light, Environmental Science & Technology, 45(13), pp.5689-95. https://doi.org/10.1021/es200778p
  23. Koch, S, G Ackermann, and S Uhlig, 1989 : Extraction-Spectrophotometric Determination of Iron(Ii) in the Presence of Iron(Iii) with 1,10-Phenanthroline, Zeitschrift Fur Chemie, 29(8), 298.
  24. Jerez, Carlos A, 1997 : Molecular Methods for the Identification and Enumeration of Bioleaching Microorganisms, In Biomining, 281-97. Berlin, Heidelberg: Springer Berlin Heidelberg.
  25. Rohwerder, T, T Gehrke, K Kinzler, et al., 2003 : Bio-leaching Review Part A: Progress in Bioleaching: Fundamentals and Mechanisms of Bacterial Metal Sulfide Oxidation, Applied Microbiology and Biotechnology, 63(3), pp.239-48. https://doi.org/10.1007/s00253-003-1448-7
  26. Vu, Barbara, Miao Chen, Russell Crawford, et al., 2009 : Bacterial Extracellular Polysaccharides Involved in Biofilm Formation, Molecules, 14(7), pp.2535-54. https://doi.org/10.3390/molecules14072535
  27. Kim, Hyunjung N, Yongsuk Hong, Ilkeun Lee, et al., 2009 : Surface Characteristics and Adhesion Behavior of Escherichia Coli O157: H7: Role of Extracellular Macromolecules, Biomacromolecules, 10(9), pp.2556-64. https://doi.org/10.1021/bm900516y
  28. Kim, H N, S L Walker, and S A Bradford, 2010 : Coupled Factors Influencing the Transport and Retention of Cryptosporidium Parvum Oocysts in Saturated Porous Media, Water Research, 44(4), pp.1213-23. https://doi.org/10.1016/j.watres.2009.09.041
  29. Sand, W, T Gehrke, P G Jozsa, et al., 2001 : (Bio) Chemistry of Bacterial Leaching - Direct vs. Indirect Bioleaching, Hydrometallurgy, 59(2-3), pp.159-75. https://doi.org/10.1016/S0304-386X(00)00180-8
  30. Daoud, J, and D Karamanev, 2006 : Formation of Jarosite during Fe2+ Oxidation by Acidithiobacillus Ferrooxidans, Minerals Engineering, 19(9), pp.960-67. https://doi.org/10.1016/j.mineng.2005.10.024
  31. Jensen, A B, and C Webb, 1995 : Ferrous Sulfate Oxidation Using Thiobacillus-Ferrooxidans - a Review, Process Biochemistry, 30(3), pp.225-36. https://doi.org/10.1016/0032-9592(95)85003-1
  32. Guo, Zhaohui, Long Zhang, Yi Cheng, et al., 2010 : Effects of PH, Pulp Density and Particle Size on Solubilization of Metals from a Pb/Zn Smelting Slag Using Indigenous Moderate Thermophilic Bacteria, Hydrometallurgy, 104(1), pp.25-31. https://doi.org/10.1016/j.hydromet.2010.04.006