• Title/Summary/Keyword: Homogeneous liquid

Search Result 242, Processing Time 0.025 seconds

The control of liquid phase behavior during sintering of Clay/EAF dust bodies (Clay/EAF dust계 시편의 소결과정 중 액상거동 제어)

  • Kim, Kwang-Soo;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.68-74
    • /
    • 2005
  • The electrical arc furnace (EAF) classified as a special waste contains many flux components producing melts during a sintering process, so it decreases the sintering temperature and improves the mechanical properties of specimens. Increasing dust content in a clay-dust system brick, however, may cause the fraction defective higher due to the excessive liquid produced. To control the liquid behavior produced during sintering process for the clay-dust system specimens, the $Al_2O_3$ was added and the physical properties were analyzed. The microstructure for the clay-dust system body sintered with $Al_2O_3$ became homogeneous and the overall size of pores decreased. Adding $Al_2O_3$ to clay-dust system body increased the mechanical properties and the temperature of maximum strength increased as much as $50^{\circ}C$, and the apparent density increased and the absorption decreased. The mullite ($3Al_2O_3{\cdot}2SiO_2$) was produced during sintering process by reaction of $Al_2O_3$ and $SiO_2$ which could participate to liquid-producing-process and the viscosity of melts increased which was proved by measuring a critical viscosity temperature (Tcv) therefore, the refractoriness of specimens were improved to lower the fraction defective.

In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker (과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성)

  • Oh, Si-Jin;Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Myong-Hoon;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The gel polymer electrolyte(GPE) were prepared by in-situ thermal cross-linking reaction of homogeneous precursor solution of perfluorinated phosphate-based cross-linker and liquid electrolyte. Ionic conductivities and electrochemical properties of the prepared gel polymer electrolyte with the various contents of liquid electrolytes and perfluorinated organophosphate-based cross-linker were examined. The stable gel polymer electrolyte was obtained up to 97 wt% of the liquid electrolyte. Ionic conductivity and electrochemical properties of the gel polymer electrolytes with the various chain length of perfluorinated ethylene oxide and different content of liquid electrolytes were examined. The maximum ionic conductivity of liquid electrolyte was measured to be $1.02\;{\times}\;10^{-2}\;S/cm$ at $30^{\circ}C$ using the cross-linker($PFT_nGA$). The electrochemical stability of the gel polymer electrolyte was extended to 4.5 V. The electrochemical performances of test cells composed of the resulting gel polymer electrolyte were also studied to evaluate the applicability on the lithium polymer batteries. The test cell carried a discharge capacity of 136.11mAh/g at 0.1C. The discharge capacity was measured to be 91% at 2C rate. The discharge capacity decreased with increase of discharge rate which was due to the polarization. After 500th charge/discharge cycles, the capacity of battery decreased to be 70% of the initial capacity.

Development of Optimum PAC Dose Prediction Program using $^{14}C$-radiolabled MIB and HSDM ($^{14}C$-radiolabeled MIB와 HSDM을 이용한 최적 PAC 투입량 예측프로그램의 개발)

  • Kim, Young-Il;Bae, Byung-Uk;Kim, Kyu-Hyoung;Hong, Hyun-Su;Westerhoff, Paul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1123-1128
    • /
    • 2005
  • NIB(methylisoborneol) is an earthy/musty odor compound produced as a second metabolite by cyanobacteria and actinomycetes. MIB is not removed by conventional water treatment(coagulation, sedimentation, filtration) and its presence in tap water, even at low ng/L levels, can result in consumer complaints. PAC(powdered activated carbon) can effectively remove MIB when the correct dose is applied. But, since most operators in water treatment plants apply a PAC dose and then adjust that dose depending on direct observation (odor detection) after treatment, the result is often under-dose or eve,-dose. In this study, kinetic and isotherm tests using $^{14}C$-radiolabeled MIB were performed to determine coefficients for the HSDM(homogeneous surface diffusion model), including liquid film mass transfer coefficient($K_f$) and surface diffusion coefficient ($D_s$). The HSDM gave a reasonable fit and allowed prediction with the experimental data. Base on the HSDM, the authors developed an optimum PAC dose prediction program using the Excel spreadsheet. When the developed program was applied at two water treatment plants, the PAC dose based on the experience of operators in the water treatment plant was significantly different from that recommended by the newly developed program. If operators are willing to use the optimum PAC dose prediction program, it should solve dosing problems.

Gas and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle -Effects of Flow Zone Sizes- (단일노즐을 사용한 내부순환 공기리프트 반응기에서 기체 및 액체의 유동특성 - 유동지역의 크기영향 -)

  • Jang, Sea-Il;Kim, Jong-Chul;Jang, Young-Joon;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.901-906
    • /
    • 1998
  • Gas and liquid flow characteristics were investigated in an internal circulation airlift reactor using a single nozzle for a gas distributor. In three reactors with different diameters of the downcomer and heights of the riser, the gas holdup in the individual flow zone and the impulseresponse curve of tracer for an air-water system were measured for various gas velocities and reactor heights. Experimental results showed that the flow behavior of bubbles in the riser was the slug flow due to strong coalescences of bubbles and that the bubble flow pattern in the downcomer was the transition bubble flow for the smaller diameter of the downcomer, however, it was the homogeneous bubble flow for the larger one. And mean gas holdups in the individual flow zone and the reactor were greatly increased with decreasing the diameter of the downcomer for the equal ratio of height of the top section to that of the riser. Also, the mixing time was much effected by the height of the top section of reactor and for the equal ratio of height of top section to that of the riser, it was increased with increasing the diameter of the downcomer and the height of the riser. Flow characteristics of liquid were mainly varied with the bubble flow pattern in the downcomer and the size of the top section of reactor. And circulation velocities of liquid in the riser were increased with increasing gas velocities and the size of the top section of reactor, and for the equal ratio of height of top section to that of the riser, they were increased with increasing the diameter of the downcomer and the height of the riser.

  • PDF

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants 1. The Phase Behavior and Flow Properties of O/W Emulsion Prepared with the Inversion Emulsification Method (혼합비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성 1. 반전유화법을 이용한 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.196-203
    • /
    • 1993
  • Emulsions were prepared with the inversion emulsification method which adopted the agent-in-oil method-dissolving the mixed surfactants composed of the glycerin monostearate, polyoxyethylene(100) monostearate, and polyoxyethylene(20) sorbitan monostearate into mixtures of liquid paraffin and beeswax, and adding the aqueous solution of propylene glycol, gradually-and then their phases and viscosities behaviors in the emulsifying process were investigated. The fine and homogeneous o/w emulsions were formed in the HLB region (HLB 10.1~12.3), showing liquid crystalline phase and white gel phase in the emulsifying process. The phase inversion steps in the emulsifying process appeared as follows, i.e., oil continuous phase${\rightarrow}$liquid crystalline phase${\rightarrow}$white gel phase${\rightarrow}$o/w emulsion. Shear rate-shear stress curves of the prepared emulsions had the yield values which pointed out the existence of inner structure between emulsion particles, and the hysteresis loop which showed that the inner structure wasbroken irreversibly by the shear. The area of hystersis loop, an index of breakdown of inner structure, was increased with the decreasing of the HLB value of emulsifier, Shear time-shear stress curves showed the time dependence of plastic viscosity, and the relaxation time in time thinning behavior(${\lambda}$) indicated that the stability of emulsions prepared with the inversion emulsification method was decreased with the increasing of HLB values of emulsifier and was higher than that of emulsions prepared by homomixer.

  • PDF

Numerical Analysis of the Influence of Acceleration on Cavitation Instabilities that arise in Cascade

  • Iga, Yuka;Konno, Tasuku
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • In the turbopump inducer of a liquid propellant rocket engine, cavitation is affected by acceleration that occurs during an actual launch sequence. Since cavitation instabilities such as rotating cavitations and cavitation surges are suppressed during launch, it is difficult to obtain data on the influence of acceleration on cavitation instabilities. Therefore, as a fundamental investigation, in the present study, a three-blade cyclic cascade is simulated numerically in order to investigate the influence of acceleration on time-averaged and unsteady characteristics of cavitation that arise in cascade. Several cases of acceleration in the axial direction of the cascade, including accelerations in the upstream and downstream directions, are considered. The numerical results reveal that cavity volume is suppressed in low cavitation number condition and cavitation performance increases as a result of high acceleration in the axial-downstream direction, also, the inverse tendency is observed in the axial-upstream acceleration. Then, the regions in which the individual cavitation instabilities occur shift slightly to a low-cavitation-number region as the acceleration increases downstream. In addition, in a downstream acceleration field, neither sub-synchronous rotating cavitation nor rotating-stall cavitation are observed. On the other hand, rotating-stall cavitation occurs in a relatively higher-cavitation-number region in an upstream acceleration field. Then, acceleration downstream is robust against cavitation instabilities, whereas cavitation instabilities easily occur in the case of acceleration upstream. Additionally, comparison with the Froude number under the actual launch conditions of a Japanese liquid propellant rocket reveals that the cavitation performance will not be affected by the acceleration under the current launch conditions.

Fabrication of Li2MnSiO4 Cathode Thin Films by RF Sputtering for Thin Film Li-ion Secondary Batteries and Their Electrochemical Properties (RF 스퍼터법을 이용한 Li2MnSiO4 리튬 이차전지 양극활물질 박막 제조 및 전기화학적 특성)

  • Chae, Suman;Shim, Joongpyo;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.447-453
    • /
    • 2017
  • In this study, $Li_2MnSiO_4$ cathode material and LiPON solid electrolyte were manufactured into thin films, and the possibility of their use in thin-film batteries was researched. When the RTP treatment was performed after $Li_2MnSiO_4$ cathode thin-film deposition on the SUS substrate by a sputtering method, a ${\beta}-Li_2MnSiO_4$ cathode thin film was successfully manufactured. The LiPON solid electrolyte was prepared by a reactive sputtering method using a $Li_3PO_4$ target and $N_2$ gas, and a homogeneous and flat thin film was deposited on a $Li_2MnSiO_4$ cathode thin film. In order to evaluate the electrochemical properties of the $Li_2MnSiO_4$ cathode thin films, coin cells using only a liquid electrolyte were prepared and the charge/discharge test was conducted. As a result, the amorphous thin film of RTP treated at $600^{\circ}C$ showed the highest initial discharge capacity of about $60{\mu}Ah/cm^2$. In cases of coin cells using liquid/solid double electrolyte, the discharge capacities of the $Li_2MnSiO_4$ cathode thin films were comparable to those without solid LiPON electrolyte. It was revealed that $Li_2MnSiO_4$ cathode thin films with LiPON solid electrolyte were applicable in thin film batteries.

Sintering and the Electrical Properties of Co-doped $ZnO-Bi_2O_3-Sb_2O_3$ Varistor System (Co를 첨가한 $ZnO-Bi_2O_3-Sb_2O_3$ 바리스터의 소결 및 전기적 특성)

  • 김철홍;김진호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.186-193
    • /
    • 2000
  • Effects of 1.0 mol% CoO addition on sintering and the electrical properties of ZnO-Bi2O3-Sb2O3(ZBS) varistor system with 3.0 mol% co-addition of Sb2O3 and Bi2O3 at various Sb/Bi ratio (0.5, 1.0, and 2.0) were investigated. Cobalt had little influence on the liquid-phase formation and the pyrochlore decomposition temepratures of ZBS, while densification was mainly dependent on Sb/Bi ratio: when Sb/Bi=0.5, excess Bi2O3 irrelevant to the formation of pyrochore(Zn2Sb3Bi3O14) forms eutectic liquid at ~75$0^{\circ}C$ which promotes densification and grain growth; with Sb/Bi=2.0, the second phase Zn7Sb2O12 formed by excess Sb2O3 irrelevant to the formation of the pyrochlore retards densification up to ~100$0^{\circ}C$. These phases caused the coarsening and uneven distribution of the second phase particles on the grain boundaries of ZnO above the pyrochlore decomposition temperature(~105$0^{\circ}C$), which led to broad size dist-ribution of ZnO; the specimen with Sb/Bi=1.0 showed homogeneous microstructure compared with the others, which enabled improved varistor characteristics. Doping of Co increased the nonlinearity and the potential barrier height of ZBS, which is thought to stem from improved sintering behavior such as homogenized microstructure due to size reduction and even distribution of the second phase and suppressed volatility of Bi2O3, as well as the improvement in the potential barrier structure via increased donor and interface electron trap densities.

  • PDF

A Numerical Study on Various Energy and Environmental System (II) (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II))

  • Jang D. S.;Park B. S.;Kim B. S.;Lee E. J.;Song W. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites (초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성)

  • Park, Hee-Sub;Ryoo, Min-Ho;Hong, Soon-Hyung
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.