Development of Optimum PAC Dose Prediction Program using $^{14}C$-radiolabled MIB and HSDM

$^{14}C$-radiolabeled MIB와 HSDM을 이용한 최적 PAC 투입량 예측프로그램의 개발

  • Published : 2005.10.31

Abstract

NIB(methylisoborneol) is an earthy/musty odor compound produced as a second metabolite by cyanobacteria and actinomycetes. MIB is not removed by conventional water treatment(coagulation, sedimentation, filtration) and its presence in tap water, even at low ng/L levels, can result in consumer complaints. PAC(powdered activated carbon) can effectively remove MIB when the correct dose is applied. But, since most operators in water treatment plants apply a PAC dose and then adjust that dose depending on direct observation (odor detection) after treatment, the result is often under-dose or eve,-dose. In this study, kinetic and isotherm tests using $^{14}C$-radiolabeled MIB were performed to determine coefficients for the HSDM(homogeneous surface diffusion model), including liquid film mass transfer coefficient($K_f$) and surface diffusion coefficient ($D_s$). The HSDM gave a reasonable fit and allowed prediction with the experimental data. Base on the HSDM, the authors developed an optimum PAC dose prediction program using the Excel spreadsheet. When the developed program was applied at two water treatment plants, the PAC dose based on the experience of operators in the water treatment plant was significantly different from that recommended by the newly developed program. If operators are willing to use the optimum PAC dose prediction program, it should solve dosing problems.

흙냄새 혹은 곰팡이 냄새 등을 야기시키는 MIB는 남조류나 방선균등에 의해 생성되는 2차 대사산물이다. MIB는 일반적인 정수공정(응집, 침전, 여과)에 의해서는 쉽게 제거가 되지 않을 뿐만 아니라, 수돗물에 수 ng/L정도만 존재하더라도 소비자에게 심미적인 불쾌감을 유발시킬 수 있다. 일반적으로 MIB는 정확한 양의 PAC가 투입될 때 효과적으로 제거될 수 있으나, 대부분 정수장 운전자들은 PAC를 적당히 투입한 다음 처리 후 직접적인 관찰(냄새감지)에 근거하여 투입량을 조절함으로써 과잉투입 혹은 과소투입과 같은 결과를 야기하고 있는 실정이다. 이와 같은 배경을 바탕으로 본 연구에서는 $^{14}C$-radiolabled MIB을 이용한 등온흡착 및 흡착동역학 실험을 수행하여 HSDM에 필요한 물질전달계수와 표면확산계수를 결정하였다. HSDM은 실제 실험을 잘 모의하였으며, 실험 결과 또한 정확히 예측하였다. HSDM 결과에 근거하여 저자들은 Excel spreadsheet을 이용하여 최적 PAC 투입량 예측프로그램을 개발하였다. 개발된 프로그램을 실제 2개의 정수장에 적용한 결과 정수장 운전자의 경험에 의해 구해진 실제 PAC 투입량과 새롭게 개발된 프로그램에 의해 구해진 PAC 투입량 사이에 많은 차이를 보였다. 만약 정수장 운전자가 최적 PAC 투입량 예측프로그램을 이용하여 PAC 투입량을 결정한다면, 이 문제는 충분히 해결될 수 있을 것으로 판단된다.

Keywords

References

  1. Identification and Treatment of Tastes and Odors in Drinking Water, Report of American Water Works Association Research Foundation Mallevialle, J.;Suffet, I.H.
  2. Advances in Taste and Odor Treatment and Control, Report of American Water Works, Association Research Foundation Suffet, I.H.;Mallevialle, J.;Kawezynski, E.
  3. AWWA v.78 no.11 Evaluating Activated Carbons for Removing Low Concentrations of Taste- and Odor-Producing Organics Lalezary, S.;Pirbazari, M.;McGuire, M.J.
  4. AWWA v.82 no.1 Effect of Particle Size and Background Natural Organics on the Adsorption Efficiency of PAC Najm, I.N.;Snoeyink, V.L.;Suidan, M.T.;Lee, C.H.;Richard, Y. https://doi.org/10.1002/j.1551-8833.1990.tb06907.x
  5. Carbon v.40 Simultaneous Adsorption of MIB and NOM onto Activated Carbon. I. Characterisation of the System and NOM Adsorption Newcombe, G.;Morrison, J.;Hepplewhite, C. https://doi.org/10.1016/S0008-6223(02)00097-0
  6. Carbon v.40 Simulataneous Adsorption of MIB and NOM onto Activated Carbon. II. Competitive Effects Newcombe, G.;Morrison, J.;Hepplewhite, C.;Knappe, D. https://doi.org/10.1016/S0008-6223(02)00098-2
  7. Proceedings of AWWA WQTC Using Closed Loop Stripping and Jar Tests to Determine Powdered Activated Carbon Dose Needed for Removal of Geosmin : Manatee County's Experience Simpson, M.R.;MacLeod, B.W.
  8. Water Sci. Technol. v.40 no.6 A Simplified Method to Determine the Powdered Activated Carbon Dose Required to Remove Methylisoborneol Gillogly, T.;Snoeyink, V.L.;Newcome, G.;Elarde, J.R.
  9. Optimization of Powdered Activated Carbon Application for Geosmin and MIB Removal, Report of American Water Works Association Research Foundation Graham, M.;Najm, I.;Simpson, M.;MacLeod, B.;Summer, S.;Cummings, L.
  10. 대한환경공학회지 v.25 no.8 Geosmin과 2-MIB 제거를 위한 분말활성탄 최적 투입량 결정 배병욱;김영일
  11. Environ. Engr. ASCE v.104 no.2 Predictive Model for Design of Fixed-Bed Adsorbers : Parameter Estimation and Model Development Crittenden, J.C.;Weber, W.C. Jr.
  12. Envir. Engr. ASCE v.104 no.3 Predictive Model for Design of Fixed-Bed Adsorbers : Single-Component Model Verification Crittenden, J.C.;Weber, W.C. Jr.
  13. Envir. Engr. ASCE v.104 no.6 Model for Design of Multicomponent Adsorption Systems Crittenden, J.C.;Weber, W.C. Jr.
  14. AWWA v.90 no.1 $^{14}C-MIB$ Adsorption on PAC in Natural Water Gillogly, T.;Snoeyink, V.L.;Elarde, J.R.;Wilson, C.M.;Royal, E.P. https://doi.org/10.1002/j.1551-8833.1998.tb08364.x
  15. Water Res. v.34 no.8 Modeling Equilibrium Adsorption of 2-Methlisoborneol and Geosmin in Natural Waters Graham, M.;Summers, S.;Simpson, M.;MacLeod, B. https://doi.org/10.1016/S0043-1354(99)00390-5
  16. Water Res. v.35 no.5 The Application of Powdered Activated Carbon for MIB and Geosmin Removal : Predicting PAC Doses in Four Raw Waters Cook, D.;Newcombe, G.;Sztajnbok, P. https://doi.org/10.1016/S0043-1354(00)00363-8
  17. Water Res. v.27 no.6 A Simplified Solution Technique for carbon Adsorption Model Roy, D.;Wang, G.T.;Adrin, D.D. https://doi.org/10.1016/0043-1354(93)90067-R