• 제목/요약/키워드: Homeostasis

검색결과 1,252건 처리시간 0.031초

Apelin-APJ Signaling: a Potential Therapeutic Target for Pulmonary Arterial Hypertension

  • Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.196-201
    • /
    • 2014
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Kr$\ddot{u}$ppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.

WNT Signaling in Lung Repair and Regeneration

  • Raslan, Ahmed A.;Yoon, Jeong Kyo
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.774-783
    • /
    • 2020
  • The lung has a vital function in gas exchange between the blood and the external atmosphere. It also has a critical role in the immune defense against external pathogens and environmental factors. While the lung is classified as a relatively quiescent organ with little homeostatic turnover, it shows robust regenerative capacity in response to injury, mediated by the resident stem/progenitor cells. During regeneration, regionally distinct epithelial cell populations with specific functions are generated from several different types of stem/progenitor cells localized within four histologically distinguished regions: trachea, bronchi, bronchioles, and alveoli. WNT signaling is one of the key signaling pathways involved in regulating many types of stem/progenitor cells in various organs. In addition to its developmental role in the embryonic and fetal lung, WNT signaling is critical for lung homeostasis and regeneration. In this minireview, we summarize and discuss recent advances in the understanding of the role of WNT signaling in lung regeneration with an emphasis on stem/progenitor cells.

A Journey to Understand Glucose Homeostasis: Starting from Rat Glucose Transporter Type 2 Promoter Cloning to Hyperglycemia

  • Ahn, Yong Ho
    • Diabetes and Metabolism Journal
    • /
    • 제42권6호
    • /
    • pp.465-471
    • /
    • 2018
  • My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.

The Interface Between ER and Mitochondria: Molecular Compositions and Functions

  • Lee, Soyeon;Min, Kyung-Tai
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1000-1007
    • /
    • 2018
  • Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of $Ca^{2+}$ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as $Ca^{2+}$ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, $Ca^{2+}$ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases.

Lactate: a multifunctional signaling molecule

  • Lee, Tae-Yoon
    • Journal of Yeungnam Medical Science
    • /
    • 제38권3호
    • /
    • pp.183-193
    • /
    • 2021
  • Since its discovery in 1780, lactate has long been misunderstood as a waste by-product of anaerobic glycolysis with multiple deleterious effects. Owing to the lactate shuttle concept introduced in the early 1980s, a paradigm shift began to occur. Increasing evidence indicates that lactate is a coordinator of whole-body metabolism. Lactate is not only a readily accessible fuel that is shuttled throughout the body but also a metabolic buffer that bridges glycolysis and oxidative phosphorylation between cells and intracellular compartments. Lactate also acts as a multifunctional signaling molecule through receptors expressed in various cells and tissues, resulting in diverse biological consequences including decreased lipolysis, immune regulation, anti-inflammation, wound healing, and enhanced exercise performance in association with the gut microbiome. Furthermore, lactate contributes to epigenetic gene regulation by lactylating lysine residues of histones, accounting for its key role in immune modulation and maintenance of homeostasis.

A novel role of Hippo-Yap/TAZ signaling pathway in lymphatic vascular development

  • Cha, Boksik;Moon, Sungjin;Kim, Wantae
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.285-294
    • /
    • 2021
  • The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.

Cadmium altered zinc homeostasis in the Neuronal Cell

  • Ahn, Sung-Hee;Jang, Bong-Ki;Park, Jong-An;Lee, Jong-Wha
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.185.1-185.1
    • /
    • 2003
  • In this study, we investigated the effect of cadmium on genes expression related to zinc homeostasis in HT22 hippocampal neuron cell line by RT -PCR and western blotting technics. In the time-course effect, cadmium up-regulated the relative levels of MT -I and MT -II to~b-actin at 4 hr after treatment. These effects were consistent with MT -I/II protein contents by western blot analysis. But MT -III, a specific MT isoform in brain, was not affected by cadmium. (omitted)

  • PDF

Calcium signal dependent cell death by presenlin-2 mutation in PC12 cells and in cortical neuron from presenlin-2 mutation transgenic mice

  • Lee, Sun-Young;Song, Yeun-Suk;Hwang, Dae-Yeun;Kim, Young-Kyu;Yoon, Do-Young;Lim, Jong-Seok;Hong, Jin-Tae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.94.3-95
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-l (PS-1) and presenilin-2 (PS-2). PS1 and PS2 mutation are known to similar effects on the production of amyloid peptide (A ) and cause of neuronal cell dath in the brain of patient of Alzheimer's disease. The importance of the alternation of cellular calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental systems has been demonstrated. However, no studies on the effect of PS2 of mutant PS2 on cellular calcium homeostasis, and relevance of its change to neuronal cell vulnerability against neurotoxins have been reported. (omitted)

  • PDF

Autophagy: a lysosomal degradation process for cellular homeostasis and its relationship with oral squamous cell carcinoma

  • Jung, Junyoung;Kim, Joungmok;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • 제46권2호
    • /
    • pp.74-80
    • /
    • 2021
  • Autophagy is an evolutionarily well-conserved cellular homeostasis program that responds to various cellular stresses and degrades unnecessary or harmful intracellular materials in lysosomes. Accumulating evidence has shown that autophagy dysfunction often results in various human pathophysiological conditions, including metabolic disorders, cancers, and neurodegenerative diseases. The discovery of an autophagy machinery protein network has revealed underlying molecular mechanisms of autophagy, and advances in the understanding of its regulatory mechanism have provided novel therapeutic targets for treating human diseases. Recently, reports have emerged on the involvement of autophagy in oral squamous cell carcinoma (OSCC). Although the role of autophagy in cancer therapy is controversial, the beneficial use of the induction of autophagic cell death in OSCC has drawn significant attention. In this review, the types of autophagy, mechanism of autophagosome biogenesis, and modulating molecules and therapeutic candidates affecting the induction of autophagic cell death in OSCC are briefly described.

Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans

  • Lee, Hanseul;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.763-770
    • /
    • 2022
  • Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.