Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.6.020

A novel role of Hippo-Yap/TAZ signaling pathway in lymphatic vascular development  

Cha, Boksik (Daegu Gyeongbuk Medical Innovation Foundation)
Moon, Sungjin (Department of Biological Science, Kangwon National University)
Kim, Wantae (Department of Biochemistry, Chungnam National University)
Publication Information
BMB Reports / v.54, no.6, 2021 , pp. 285-294 More about this Journal
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Keywords
Hippo signaling pathway; Lymphatic endothelial cells (LECs); Lymphatic vascular development; PROX1; TAZ; VEGF-C/VEGFR3; YAP;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dupont S, Morsut L, Aragona M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183   DOI
2 Wang KC, Yeh YT, Nguyen P et al (2016) Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc Natl Acad Sci U S A 113, 11525-11530   DOI
3 Au AC, Hernandez PA, Lieber E et al (2010) Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am J Hum Genet 87, 436-444   DOI
4 Wang L, Luo JY, Li B et al (2016) Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579-582   DOI
5 Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74-80   DOI
6 Petrova TV, Karpanen T, Norrmen C et al (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10, 974-981   DOI
7 Geng X, Cha B, Mahamud MR and Srinivasan RS (2017) Intraluminal valves: development, function and disease. Dis Model Mech 10, 1273-1287   DOI
8 Wigle JT and Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769-778   DOI
9 Cha B, Geng X, Mahamud MR et al (2018) Complementary Wnt sources regulate lymphatic vascular development via PROX1-dependent Wnt/β-catenin signaling. Cell Rep 25, 571-584.e5   DOI
10 Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA and Miele L (2021) Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 20, 125-144   DOI
11 Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17, 722-735   DOI
12 Tschaharganeh DF, Chen X, Latzko P et al (2013) Yesassociated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 144, 1530-1542.e12   DOI
13 Kim W, Khan SK, Gvozdenovic-Jeremic J et al (2017) Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 127, 137-152   DOI
14 Kang J, Yoo J, Lee S et al (2010) An exquisite crosscontrol mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116, 140-150   DOI
15 Niessen K, Zhang G, Ridgway JB et al (2011) The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood 118, 1989-1997   DOI
16 Srinivasan RS, Dillard ME, Lagutin OV et al (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21, 2422-2432   DOI
17 Hong YK, Harvey N, Noh YH et al (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225, 351-357   DOI
18 Srinivasan RS, Geng X, Yang Y et al (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24, 696-707   DOI
19 Adams RH and Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8, 464-478   DOI
20 Bazigou E, Wilson JT and Moore Jr JE (2014) Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc Res 96, 38-45   DOI
21 Xu T, Wang W, Zhang S, Stewart RA and Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063   DOI
22 Cha B, Ho YC, Geng X et al (2020) YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Development 147, dev195453   DOI
23 Fatima A, Culver A, Culver F et al (2014) Murine Notch1 is required for lymphatic vascular morphogenesis during development. Dev Dyn 243, 957-964   DOI
24 Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J and Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12, 711-716   DOI
25 Sabine A, Bovay E, Demir CS et al (2015) FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest 125, 3861-3877   DOI
26 Zhang L, Ren F, Zhang Q, Chen Y, Wang B and Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14, 377-387   DOI
27 Sakabe M, Fan J, Odaka Y et al (2017) YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc Natl Acad Sci U S A 114, 10918-10923   DOI
28 Harvey NL, Srinivasan RS, Dillard ME et al (2005) Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37, 1072-1081   DOI
29 Martel C, Li W, Fulp B et al (2013) Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest 123, 1571-1579   DOI
30 Wiig H, Schroder A, Neuhofer W et al (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123, 2803-2815   DOI
31 Plouffe SW, Lin KC, Moore JL 3rd et al (2018) The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J Biol Chem 293, 11230-11240   DOI
32 Murtomaki A, Uh MK, Choi YK et al (2013) Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development 140, 2365-2376   DOI
33 Zhou T, Gao B, Fan Y et al (2020) Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin. Elife 9, e52779   DOI
34 Vaahtomeri K, Karaman S, Makinen T and Alitalo K (2017) Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev 31, 1615-1634   DOI
35 Cha B, Geng X, Mahamud MR et al (2016) Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes Dev 30, 1454-1469   DOI
36 Sabine A, Agalarov Y, Hajjami HM-E et al (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphaticvalve formation. Dev Cell 22, 430-445   DOI
37 McLatchie LM, Fraser NJ, Main MJ et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333-339   DOI
38 Bazigou E, Xie S, Chen C et al (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17, 175-186   DOI
39 Grimm L, Nakajima H, Chaudhury S et al (2019) Yap1 promotes sprouting and proliferation of lymphatic progenitors downstream of Vegfc in the zebrafish trunk. Elife 8, e42881   DOI
40 Bui K and Hong YK (2020) Ras pathways on Prox1 and lymphangiogenesis: insights for therapeutics. Front Cardiovasc Med 7, 597374   DOI
41 Azad T, Rensburg HJJ, Lightbody ED et al (2018) A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat Commun 9, 1061   DOI
42 Tammela T and Alitalo K (2010) Lymphangiogenesis: Molecular mechanisms and future promise. Cell 140, 460-476   DOI
43 Yuan L, Moyon D, Pardanaud L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129, 4797-4806   DOI
44 Mahamud MR, Geng X, Ho YC et al (2019) GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through miR126. Development 146, dev184218   DOI
45 Srinivasan RS and Oliver G (2011) Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev 25, 2187-2197   DOI
46 Geng X, Cha B, Mahamud MR et al (2016) Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev Biol 409, 218-233   DOI
47 Norrmen C, Ivanov KI, Cheng J et al (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185, 439-457   DOI
48 Kazenwadel J, Betterman KL, Chong CE et al (2015) GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 125, 2979-2994   DOI
49 Danussi C, Belluz LDB, Pivetta E et al (2013) EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance. Mol Cell Biol 33, 4381-4394   DOI
50 Kim W and Jho EH (2018) The history and regulatory mechanism of the Hippo pathway. BMB Rep 51, 106-118   DOI
51 Ma S, Meng Z, Chen R and Guan K-L (2019) The Hippo pathway: biology and pathophysiology. Annu Rev Biochem 88, 577-604   DOI
52 Piccolo S, Dupont S and Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94, 1287-1312   DOI
53 Justice RW, Woods ODF, Nol M and Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9, 534-546   DOI
54 Harvey KF, Pfleger CM and Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467   DOI
55 Zheng Y and Pan D (2019) The Hippo signaling pathway in development and disease. Dev Cell 50, 264-282   DOI
56 Zhao B, Wei X, Li W et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761   DOI
57 Alders M, Al-Gazali L, Cordeiro I et al (2014) Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum Genet 133, 1161-1167   DOI
58 Roth Flach RJ, Guo CA, Danai LV et al (2016) Endothelial mitogen-activated protein kinase kinase kinase kinase 4 is critical for lymphatic vascular development and function. Mol Cell Biol 36, 1740-1749   DOI
59 Willecke M, Hamaratoglu F, Kango-Singh M et al (2006) The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16, 2090-2100   DOI
60 Geng X, Yanagida K, Akwii RG et al (2020) S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling. JCI Insight 5, e137652   DOI
61 Cheong SS, Akram KM, Matellan C et al (2020) The planar polarity component VANGL2 is a key regulator of mechanosignaling. Front Cell Dev Biol 8, 577201   DOI
62 Choi D, Park E, Jung E et al (2019) Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight 4, e125068   DOI
63 Nakajima H and Mochizuki N (2017) Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 16, 1893-1901   DOI
64 Choi D, Park E, Jung E et al (2017) Laminar flow downregulates Notch activity to promote lymphatic sprouting. J Clin Invest 127, 1225-1240   DOI
65 Liu Z, Wei Y, Zhang L et al (2019) Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ. Oncogene 38, 120-139   DOI
66 Nonomura K, Lukacs V, Sweet DT et al (2018) Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc Natl Acad Sci U S A 115, 12817-12822   DOI
67 Pathak MM, Nourse JL, Tran T et al (2014) Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc Natl Acad Sci U S A 111, 16148-16153   DOI
68 Panciera T, Azzolin L, Cordenonsi M et al (2017) Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18, 758-770   DOI
69 Yang Y, Cha B, Motawe ZY, Srinivasan RS, Scallan JP (2019) VE-Cadherin is required for lymphatic valve formation and maintenance. Cell Rep 28, 2397-2412.e4   DOI
70 Wilson KE, Li YW, Yang N, Shen H, Orillion AR and Zhang J (2014) PTPN14 forms a complex with Kibra and LATS1 proteins and negatively regulates the YAP oncogenic function. J Biol Chem 289, 23693-23700   DOI
71 Nakajima H, Yamamoto K, Agarwala S et al (2017) Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev Cell 40, 523-536.e6   DOI
72 Yang Y, Garcia-Verdugo JM, Soriano-Navarro M et al (2012) Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120, 2340-2348
73 Francois M, Caprini A, Hosking B et al (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643-647   DOI
74 Srinivasan RS, Escobedo N, Yang Y et al (2014) The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev 28, 2175-2187   DOI
75 Koltowska K, Lagendijk AK, Pichol-Thievend C et al (2015) Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish. Cell Rep 13, 1828-1841   DOI
76 Hagerling R, Pollmann C, Andreas M et al (2013) A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J 32, 629-644   DOI
77 Semo J, Nicenboim J and Yaniv K (2016) Development of the lymphatic system: new questions and paradigms. Development 143, 924-935   DOI
78 Lim K-C, Hosoya T, Brandt W et al (2012) Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J Clin Invest 122, 3705-3717   DOI
79 Oliver G and Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16, 773-783   DOI
80 Dieterich LC, Seidel CD and Detmar M (2014) Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 17, 359-371   DOI
81 Randolph GJ, Angeli V and Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5, 617-628   DOI
82 Giampietro C, Disanza A, Bravi L et al (2015) The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol 211, 1177-1192   DOI
83 Wu S, Liu Y, Zheng Y, Dong J and Pan D (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14, 388-398   DOI
84 Kim J, Kim YH, Kim J et al (2017) YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest 127, 3441-3461   DOI
85 Wang X, Valls AF, Schermann G et al (2017) YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev Cell 42, 462-478.e7   DOI
86 Sun Z, Guo SS and Fassler R (2016) Integrin-mediated mechanotransduction. J Cell Biol 215, 445-456   DOI
87 Rausch V and Hansen CG (2020) The Hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol 30, 32-48   DOI
88 Frye M, Taddei A, Dierkes C et al (2018) Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. Nat Commun 9, 1511   DOI
89 Dunworth WP, Cardona-Costa J, Bozkulak EC et al (2014) Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ Res 114, 56-66   DOI
90 Tatin F, Taddei A, Weston A et al (2013) Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell 26, 31-44   DOI
91 James JM, Nalbandian A and Mukouyama YS (2013) TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. Development 140, 3903-3914   DOI
92 Wang L, You X, Lotinun S, Zhang L, Wu N and Zou W (2020) Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun 11, 282   DOI
93 Chen H, Griffin C, Xia L and Srinivasan RS (2014) Molecular and cellular mechanisms of lymphatic vascular maturation. Microvasc Res 96, 16-22   DOI
94 Martinez-Corral I, Ulvmar MH, Stanczuk L et al (2015) Nonvenous origin of dermal lymphatic vasculature. Circ Res 116, 1649-1654   DOI
95 Cho H, Kim J, Ahn JH et al (2019) YAP and TAZ negatively regulate Prox1 during developmental and pathologic lymphangiogenesis. Circ Res 124, 225-242   DOI
96 Sun C, Mello VD, Mohamed A et al (2017) Common and distinctive functions of the Hippo effectors Taz and Yap in skeletal muscle stem cell function. Stem Cells 35, 1958-1972   DOI
97 Planas-Paz L, Strilic B, Goedecke A, Breier G, Fassler R and Lammert E (2012) Mechanoinduction of lymph vessel expansion. EMBO J 31, 788-804   DOI
98 Aragona M, Panciera T, Manfrin A et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047-1059   DOI
99 Yoon CM, Hong BS, Moon HG et al (2008) Sphingosine1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood 112, 1129-1138
100 Azzolin L, Panciera T, Soligo S et al (2014) YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158, 157-170   DOI
101 Totaro A, Panciera T and Piccolo S (2018) YAP/TAZ upstream signals and downstream responses. Nat Cell Biol 20, 888-899   DOI
102 Da Mesquita S, Louveau A, Vaccari A et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature 560, 185-191   DOI
103 Ho YC and Srinivasan RS (2020) Lymphatic vasculature in energy homeostasis and obesity. Front Physiol 11, 3   DOI
104 Misra JR and Irvine KD (2018) The Hippo signaling network and its biological functions. Annu Rev Genet 52, 65-87   DOI
105 Meng Z, Moroishi T and Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30, 1-17   DOI
106 Yu FX, Zhao B and Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811-828   DOI
107 Tapon N, Harvey KF, Bell DW et al (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478   DOI
108 Udan RS, Kango-Singh M, Nolo R, Tao C and Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5, 914-920   DOI
109 Wu S, Huang J, Dong J and Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456   DOI
110 Zanconato F, Cordenonsi M and Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29, 783-803   DOI
111 Yu FX and Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27, 355-371   DOI
112 Kuta A, Mao Y, Martin T et al (2016) Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development 143, 2367-2375   DOI
113 Escobedo N and Oliver G (2016) Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol 32, 677-691   DOI
114 Yeh YW, Cheng CC, Yang ST et al (2017) Targeting the VEGF-C/VEGFR3 axis suppresses Slug-mediated cancer metastasis and stemness via inhibition of KRAS/YAP1 signaling. Oncotarget 8, 5603-5618   DOI
115 Hamaratoglu F, Willecke M, Kango-Singh M et al (2006) The tumour-suppressor genes NF2/Merlin and expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8, 27-36   DOI
116 Betterman KL, Sutton DL, Secker GA et al (2020) Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J Clin Invest 130, 3315-3328   DOI
117 Lin CI, Chen CN, Huang MT et al (2008) Lysophosphatidic acid up-regulates vascular endothelial growth factor-C and lymphatic marker expressions in human endothelial cells. Cell Mol Life Sci 65, 2740-2751   DOI
118 Kim W, Kim M and Jho EH (2013) Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem J 450, 9-21   DOI
119 Nusse R and Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-999   DOI
120 Yu FX, Zhao B, Panupinthu N et al (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791   DOI
121 Hoopes SL, Willcockson HH and and Caron KM (2008) Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice. PLoS One 7, e45261   DOI
122 Kim M and Jho EH (2014) Cross-talk between Wnt/beta-catenin and Hippo signaling pathways: a brief review. BMB Rep 47, 540-545   DOI
123 Zhao B, Li L, Tumaneng K, Wang CY and Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24, 72-85   DOI
124 Huang W, Lv X, Liu C et al (2012) The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbetaTrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem 287, 26245-26253   DOI
125 Lee SJ, Chan TH, Chen TC, Liao BK, Hwang PP and Lee H (2008) LPA1 is essential for lymphatic vessel development in zebrafish. FASEB J 22, 3706-3715   DOI
126 Clevers H and Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205   DOI
127 Sumida H, Noguchi K, Kihara Y et al (2010) LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 116, 5060-5070   DOI
128 Park HW, Kim YC, Yu B et al (2015) Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780-794   DOI
129 Lutze G, Haarmann A, Toukam JAD, Buttler K, Wilting J and Becker J (2019) Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling. Sci Rep 9, 4739   DOI
130 Azzolin L, Zanconato F, Bresolin S et al (2012) Role of TAZ as mediator of Wnt signaling. Cell 151, 1443-1456   DOI
131 Choi HJ, Zhang H, Park H et al (2015) Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun 6, 6943   DOI
132 Hagerling R, Hoppe E, Dierkes C et al (2018) Distinct roles of VE-cadherin for development and maintenance of specific lymph vessel beds. EMBO J 37, e98271
133 Liu X, Yang N, Figel SA et al (2013) PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266-1273   DOI
134 Wang W, Huang J, Wang X et al (2012) PTPN14 is required for the density-dependent control of YAP1. Genes Dev 26, 1959-1971   DOI