Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0097

Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans  

Lee, Hanseul (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Seung-Jae V. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.
Keywords
aging; Caenorhabditis elegans; health span; homeostasis; insulin/IGF-1 signaling; longevity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Son, H.G., Seo, K., Seo, M., Park, S., Ham, S., An, S.W.A., Choi, E.S., Lee, Y., Baek, H., Kim, E., et al. (2018). Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in C. elegans. Genes Dev. 32, 1562-1575.   DOI
2 Son, H.G., Seo, M., Ham, S., Hwang, W., Lee, D., An, S.W., Artan, M., Seo, K., Kaletsky, R., Arey, R.N., et al. (2017). RNA surveillance via nonsensemediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nat. Commun. 8, 14749.   DOI
3 Soto, C. and Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332-1340.   DOI
4 Sun, Y., Li, M., Zhao, D., Li, X., Yang, C., and Wang, X. (2020). Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. Elife 9, e55745.   DOI
5 Tawo, R., Pokrzywa, W., Kevei, E., Akyuz, M.E., Balaji, V., Adrian, S., Hohfeld, J., and Hoppe, T. (2017). The ubiquitin ligase CHIP integrates proteostasis and aging by regulation of insulin receptor turnover. Cell 169, 470-482.e13.   DOI
6 Tazearslan, C., Cho, M., and Suh, Y. (2012). Discovery of functional gene variants associated with human longevity: opportunities and challenges. J. Gerontol. A Biol. Sci. Med. Sci. 67, 376-383.   DOI
7 Uno, M., Tani, Y., Nono, M., Okabe, E., Kishimoto, S., Takahashi, C., Abe, R., Kurihara, T., and Nishida, E. (2021). Neuronal DAF-16-to-intestinal DAF16 communication underlies organismal lifespan extension in C. elegans. iScience 24, 102706.   DOI
8 Zecic, A., Dhondt, I., and Braeckman, B.P. (2022). Accumulation of glycogen and upregulation of LEA-1 in C. elegans daf-2(e1370) support stress resistance, not longevity. Cells 11, 245.   DOI
9 Zhang, Y., Zhang, W., and Dong, M. (2018). The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans. Sci. China Life Sci. 61, 1060-1070.   DOI
10 Zhou, K.I., Pincus, Z., and Slack, F.J. (2011). Longevity and stress in Caenorhabditis elegans. Aging (Albany N.Y.) 3, 733-753.
11 Melzer, D., Pilling, L.C., and Ferrucci, L. (2020). The genetics of human ageing. Nat. Rev. Genet. 21, 88-101.   DOI
12 Zhou, Y., Wang, X., Song, M., He, Z., Cui, G., Peng, G., Dieterich, C., Antebi, A., Jing, N., and Shen, Y. (2019). A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nat. Commun. 10, 4827.   DOI
13 Zullo, J.M., Drake, D., Aron, L., O'Hern, P., Dhamne, S.C., Davidsohn, N., Mao, C.A., Klein, W.H., Rotenberg, A., Bennett, D.A., et al. (2019). Regulation of lifespan by neural excitation and REST. Nature 574, 359-364.   DOI
14 Martell, J., Seo, Y., Bak, D.W., Kingsley, S.F., Tissenbaum, H.A., and Weerapana, E. (2016). Global cysteine-reactivity profiling during impaired insulin/IGF-1 signaling in C. elegans identifies uncharacterized mediators of longevity. Cell Chem. Biol. 23, 955-966.   DOI
15 Murphy, C.T., Lee, S.J., and Kenyon, C. (2007). Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 104, 19046-19050.   DOI
16 Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283.   DOI
17 Lee, D., Hwang, W., Artan, M., Jeong, D.E., and Lee, S.J. (2015a). Effects of nutritional components on aging. Aging Cell 14, 8-16.   DOI
18 Hwang, A.B. and Lee, S.J. (2011). Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany N.Y.) 3, 304-310.
19 Hwang, A.B., Ryu, E.A., Artan, M., Chang, H.W., Kabir, M.H., Nam, H.J., Lee, D., Yang, J.S., Kim, S., Mair, W.B., et al. (2014). Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 111, E4458-E4467.
20 Kinser, H.E. and Pincus, Z. (2020). MicroRNAs as modulators of longevity and the aging process. Hum. Genet. 139, 291-308.   DOI
21 Jeong, D.E., Artan, M., Seo, K., and Lee, S.J. (2012). Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging. Front. Genet. 3, 218.
22 Admasu, T.D., Chaithanya Batchu, K., Barardo, D., Ng, L.F., Lam, V.Y.M., Xiao, L., Cazenave-Gassiot, A., Wenk, M.R., Tolwinski, N.S., and Gruber, J. (2018). Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling. Dev. Cell 47, 67-79.e5.   DOI
23 An, S.W.A., Artan, M., Park, S., Altintas, O., and Lee, S.J.V. (2017). Longevity regulation by insulin/IGF-1 signalling. In Ageing: Lessons from C. elegans, A. Olsen and M. Gill, eds. (Cham, Switzerland: Springer), pp. 63-81.
24 Artan, M., Sohn, J., Lee, C., Park, S.Y., and Lee, S.V. (2022). MON-2, a Golgi protein, promotes longevity by upregulating autophagy through mediating inter-organelle communications. Autophagy 18, 1208-1210.   DOI
25 Jung, Y., Kwon, S., Ham, S., Lee, D., Park, H.H., Yamaoka, Y., Jeong, D.E., Artan, M., Altintas, O., Park, S., et al. (2020). Caenorhabditis elegans Lipin 1 moderates the lifespan-shortening effects of dietary glucose by maintaining omega-6 polyunsaturated fatty acids. Aging Cell 19, e13150.   DOI
26 Kaletsky, R., Lakhina, V., Arey, R., Williams, A., Landis, J., Ashraf, J., and Murphy, C.T. (2016). The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature 529, 92-96.   DOI
27 Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464.   DOI
28 Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512.   DOI
29 Kim, B., Lee, J., Kim, Y., and Lee, S.V. (2020a). Regulatory systems that mediate the effects of temperature on the lifespan of Caenorhabditis elegans. J. Neurogenet. 34, 518-526.   DOI
30 Lee, G.Y., Sohn, J., and Lee, S.V. (2021a). Combinatorial approach using Caenorhabditis elegans and mammalian systems for aging research. Mol. Cells 44, 425-432.   DOI
31 Kimura, K.D., Tissenbaum, H.A., Liu, Y., and Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946.   DOI
32 Levine, B. and Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell 176, 11-42.   DOI
33 Kim, E.J.E., Son, H.G., Park, H.H., Jung, Y., Kwon, S., and Lee, S.V. (2020b). Caenorhabditis elegans algn-2 is critical for longevity conferred by enhanced nonsense-mediated mRNA decay. iScience 23, 101713.   DOI
34 Kim, S. and Kim, C. (2021). Transcriptomic analysis of cellular senescence: one step closer to senescence atlas. Mol. Cells 44, 136-145.   DOI
35 Kim, S.S. and Lee, S.V. (2019). Non-coding RNAs in Caenorhabditis elegans aging. Mol. Cells 42, 379-385.
36 Kim, Y.K. and Maquat, L.E. (2019). UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA 25, 407-422.   DOI
37 Kirkwood, T.B. (1977). Evolution of ageing. Nature 270, 301-304.   DOI
38 Lai, C.H., Chou, C.Y., Ch'ang, L.Y., Liu, C.S., and Lin, W. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10, 703-713.   DOI
39 Lee, D., Jeong, D.E., Son, H.G., Yamaoka, Y., Kim, H., Seo, K., Khan, A.A., Roh, T.Y., Moon, D.W., Lee, Y., et al. (2015b). SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev. 29, 2490-2503.   DOI
40 Lee, D., Son, H.G., Jung, Y., and Lee, S.V. (2017). The role of dietary carbohydrates in organismal aging. Cell. Mol. Life Sci. 74, 1793-1803.   DOI
41 Lee, Y., Jung, Y., Jeong, D.E., Hwang, W., Ham, S., Park, H.H., Kwon, S., Ashraf, J.M., Murphy, C.T., and Lee, S.V. (2021b). Reduced insulin/IGF1 signaling prevents immune aging via ZIP-10/bZIP-mediated feedforward loop. J. Cell Biol. 220, e202006174.   DOI
42 Li, W.J., Wang, C.W., Tao, L., Yan, Y.H., Zhang, M.J., Liu, Z.X., Li, Y.X., Zhao, H.Q., Li, X.M., He, X.D., et al. (2021b). Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat. Commun. 12, 4568.   DOI
43 Lee, Y., An, S.W.A., Artan, M., Seo, M., Hwang, A.B., Jeong, D.E., Son, H.G., Hwang, W., Lee, D., Seo, K., et al. (2015c). Genes and pathways that influence longevity in Caenorhabditis elegans. In Aging Mechanisms: Longevity, Metabolism, and Brain Aging, N. Mori and I. Mook-Jung, eds. (Tokyo, Japan: Springer), pp. 123-169.
44 Lee, S.J., Hwang, A.B., and Kenyon, C. (2010). Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF1 activity. Curr. Biol. 20, 2131-2136.   DOI
45 Lee, S.J., Murphy, C.T., and Kenyon, C. (2009). Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 10, 379-391.   DOI
46 Lee, Y., Hwang, W., Jung, J., Park, S., Cabatbat, J.J., Kim, P.J., and Lee, S.J. (2016). Inverse correlation between longevity and developmental rate among wild C. elegans strains. Aging (Albany N.Y.) 8, 986-999.
47 Li, Q., Hagberg, C.E., Silva Cascales, H., Lang, S., Hyvonen, M.T., Salehzadeh, F., Chen, P., Alexandersson, I., Terezaki, E., Harms, M.J., et al. (2021a). Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat. Med. 27, 1941-1953.   DOI
48 Li, S.T., Zhao, H.Q., Zhang, P., Liang, C.Y., Zhang, Y.P., Hsu, A.L., and Dong, M.Q. (2019). DAF-16 stabilizes the aging transcriptome and is activated in mid-aged Caenorhabditis elegans to cope with internal stress. Aging Cell 18, e12896.   DOI
49 Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217.   DOI
50 Lykke-Andersen, S. and Jensen, T.H. (2015). Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16, 665-677.   DOI
51 Wu, M., Kang, X., Wang, Q., Zhou, C., Mohan, C., and Peng, A. (2017). Regulator of G protein signaling-1 modulates paraquat-induced oxidative stress and longevity via the insulin like signaling pathway in Caenorhabditis elegans. Toxicol. Lett. 273, 97-105.   DOI
52 Venz, R., Pekec, T., Katic, I., Ciosk, R., and Ewald, C.Y. (2021). End-of-life targeted degradation of DAF-2 insulin/IGF-1 receptor promotes longevity free from growth-related pathologies. Elife 10, e71335.   DOI
53 Visscher, M., De Henau, S., Wildschut, M.H.E., van Es, R.M., Dhondt, I., Michels, H., Kemmeren, P., Nollen, E.A., Braeckman, B.P., Burgering, B.M.T., et al. (2016). Proteome-wide changes in protein turnover rates in C. elegans models of longevity and age-related disease. Cell Rep. 16, 3041-3051.   DOI
54 Wang, H., Webster, P., Chen, L., and Fisher, A.L. (2019). Cell-autonomous and non-autonomous roles of daf-16 in muscle function and mitochondrial capacity in aging C. elegans. Aging (Albany N.Y.) 11, 2295-2311.
55 Williams, G.C. (2001). Pleiotropy, natural selection, and the evolution of senescence: Evolution 11, 398-411 (1957). Sci. Aging Knowledge Environ. 2001, cp13.   DOI
56 Wolff, S., Weissman, J.S., and Dillin, A. (2014). Differential scales of protein quality control. Cell 157, 52-64.   DOI
57 Zaarur, N., Desevin, K., Mackenzie, J., Lord, A., Grishok, A., and Kandror, K.V. (2019). ATGL-1 mediates the effect of dietary restriction and the insulin/IGF-1 signaling pathway on longevity in C. elegans. Mol. Metab. 27, 75-82.   DOI
58 Rodriguez, M., Snoek, L.B., De Bono, M., and Kammenga, J.E. (2013). Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet. 29, 367-374.   DOI
59 Senchuk, M.M., Dues, D.J., Schaar, C.E., Johnson, B.K., Madaj, Z.B., Bowman, M.J., Winn, M.E., and Van Raamsdonk, J.M. (2018). Activation of DAF16/FOXO by reactive oxygen species contributes to longevity in longlived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet. 14, e1007268.   DOI
60 Roy-Bellavance, C., Grants, J.M., Miard, S., Lee, K., Rondeau, E., Guillemette, C., Simard, M.J., Taubert, S., and Picard, F. (2017). The R148.3 gene modulates Caenorhabditis elegans lifespan and fat metabolism. G3 (Bethesda) 7, 2739-2747.   DOI
61 Seo, M., Park, S., Nam, H.G., and Lee, S.J. (2016). RNA helicase SACY1 is required for longevity caused by various genetic perturbations in Caenorhabditis elegans. Cell Cycle 15, 1821-1829.   DOI
62 Seo, M., Seo, K., Hwang, W., Koo, H.J., Hahm, J.H., Yang, J.S., Han, S.K., Hwang, D., Kim, S., Jang, S.K., et al. (2015). RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 112, E4246-E4255.
63 Shin, D.W. (2020). Lipophagy: molecular mechanisms and implications in metabolic disorders. Mol. Cells 43, 686-693.
64 Somogyvari, M., Gecse, E., and Soti, C. (2018). DAF-21/Hsp90 is required for C. elegans longevity by ensuring DAF-16/FOXO isoform A function. Sci. Rep. 8, 12048.   DOI
65 Podshivalova, K., Kerr, R.A., and Kenyon, C. (2017). How a mutation that slows aging can also disproportionately extend end-of-life decrepitude. Cell Rep. 19, 441-450.   DOI
66 Artan, M., Jeong, D.E., Lee, D., Kim, Y.I., Son, H.G., Husain, Z., Kim, J., Altintas, O., Kim, K., Alcedo, J., et al. (2016). Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides. Genes Dev. 30, 1047-1057.   DOI
67 Altintas, O., Park, S., and Lee, S.J. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 49, 81-92.   DOI
68 Amrit, F.R.G., Naim, N., Ratnappan, R., Loose, J., Mason, C., Steenberge, L., McClendon, B.T., Wang, G., Driscoll, M., Yanowitz, J.L., et al. (2019). The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. Nat. Commun. 10, 3042.   DOI
69 An, S.W.A., Choi, E.S., Hwang, W., Son, H.G., Yang, J.S., Seo, K., Nam, H.J., Nguyen, N.T.H., Kim, E.J.E., Suh, B.K., et al. (2019). KIN-4/MAST kinase promotes PTEN-mediated longevity of Caenorhabditis elegans via binding through a PDZ domain. Aging Cell 18, e12906.   DOI
70 Chang, J.T., Kumsta, C., Hellman, A.B., Adams, L.M., and Hansen, M. (2017). Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. Elife 6, e18459.   DOI
71 Depuydt, G., Shanmugam, N., Rasulova, M., Dhondt, I., and Braeckman, B.P. (2016). Increased protein stability and decreased protein turnover in the Caenorhabditis elegans Ins/IGF-1 daf-2 mutant. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1553-1559.   DOI
72 Dhondt, I., Petyuk, V.A., Cai, H., Vandemeulebroucke, L., Vierstraete, A., Smith, R.D., Depuydt, G., and Braeckman, B.P. (2016). FOXO/DAF-16 activation slows down turnover of the majority of proteins in C. elegans. Cell Rep. 16, 3028-3040.   DOI
73 Orgel, L.E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl. Acad. Sci. U. S. A. 49, 517-521.   DOI
74 Donato, V., Ayala, F.R., Cogliati, S., Bauman, C., Costa, J.G., Lenini, C., and Grau, R. (2017). Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat. Commun. 8, 14332.   DOI
75 Dues, D.J., Schaar, C.E., Johnson, B.K., Bowman, M.J., Winn, M.E., Senchuk, M.M., and Van Raamsdonk, J.M. (2017). Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radic. Biol. Med. 108, 362-373.   DOI
76 Grigolon, G., Araldi, E., Erni, R., Wu, J.Y., Thomas, C., La Fortezza, M., Laube, B., Pohlmann, D., Stoffel, M., Zarse, K., et al. (2022). Grainyhead 1 acts as a drug-inducible conserved transcriptional regulator linked to insulin signaling and lifespan. Nat. Commun. 13, 107.   DOI
77 Mack, H.I.D., Zhang, P., Fonslow, B.R., and Yates, J.R. (2017). The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans. Aging (Albany N.Y.) 9, 1414-1432.
78 Mergoud Dit Lamarche, A., Molin, L., Pierson, L., Mariol, M.C., Bessereau, J.L., Gieseler, K., and Solari, F. (2018). UNC-120/SRF independently controls muscle aging and lifespan in Caenorhabditis elegans. Aging Cell 17, e12713.   DOI
79 Narayan, V., Ly, T., Pourkarimi, E., Murillo, A.B., Gartner, A., Lamond, A.I., and Kenyon, C. (2016). Deep proteome analysis identifies age-related processes in C. elegans. Cell Syst. 3, 144-159.   DOI
80 Nieto-Torres, J.L. and Hansen, M. (2021). Macroautophagy and aging: the impact of cellular recycling on health and longevity. Mol. Aspects Med. 82, 101020.   DOI
81 Park, H.H., Hwang, W., Ham, S., Kim, E., Altintas, O., Park, S., Son, H.G., Lee, Y., Lee, D., Heo, W.D., et al. (2021a). A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF1 signaling. Nat. Commun. 12, 5631.   DOI
82 Park, H.H., Jung, Y., and Lee, S.V. (2017). Survival assays using Caenorhabditis elegans. Mol. Cells 40, 90-99. Park, S., Artan, M., Jeong, D.E., Park, H.H., Son, H.G., Kim, S.S., Jung, Y.,   DOI
83 Dzakah, E.E., Waqas, A., Wei, S., Yu, B., Wang, X., Fu, T., Liu, L., and Shan, G. (2018). Loss of miR-83 extends lifespan and affects target gene expression in an age-dependent manner in Caenorhabditis elegans. J. Genet. Genomics 45, 651-662.   DOI
84 Gao, A.W., Smith, R.L., van Weeghel, M., Kamble, R., Janssens, G.E., and Houtkooper, R.H. (2018). Identification of key pathways and metabolic fingerprints of longevity in C. elegans. Exp. Gerontol. 113, 128-140.   DOI
85 Guevara-Aguirre, J., Balasubramanian, P., Guevara-Aguirre, M., Wei, M., Madia, F., Cheng, C.W., Hwang, D., Martin-Montalvo, A., Saavedra, J., Ingles, S., et al. (2011). Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl. Med. 3, 70ra13.
86 Gusarov, I., Pani, B., Gautier, L., Smolentseva, O., Eremina, S., Shamovsky, I., Katkova-Zhukotskaya, O., Mironov, A., and Nudler, E. (2017). Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nat. Commun. 8, 15868.   DOI
87 Hwang, A.B., Jeong, D.E., and Lee, S.J. (2012). Mitochondria and organismal longevity. Curr. Genomics 13, 519-532.   DOI
88 Son, H.G., Altintas, O., Kim, E.J.E., Kwon, S., and Lee, S.V. (2019). Agedependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell 18, e12853.
89 Choi, Y., Lee, J.I., Kim, K., et al. (2021b). Diacetyl odor shortens longevity conferred by food deprivation in C. elegans via downregulation of DAF16/FOXO. Aging Cell 20, e13300.