DOI QR코드

DOI QR Code

The Interface Between ER and Mitochondria: Molecular Compositions and Functions

  • Lee, Soyeon (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology) ;
  • Min, Kyung-Tai (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology)
  • Received : 2018.11.29
  • Accepted : 2018.12.09
  • Published : 2018.12.31

Abstract

Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of $Ca^{2+}$ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as $Ca^{2+}$ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, $Ca^{2+}$ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases.

Keywords

E1BJB7_2018_v41n12_1000_f0001.png 이미지

Fig 1. Composition of ER-mitochondria interface.

Table 1. List of protein components involved in MAM

E1BJB7_2018_v41n12_1000_t0001.png 이미지

References

  1. Al-Saif, A., Al-Mohanna, F., and Bohlega, S. (2011). A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 70, 913-919. https://doi.org/10.1002/ana.22534
  2. Area-Gomez, E., de Groof, A.J., Boldogh, I., Bird, T.D., Gibson, G.E., Koehler, C.M., Yu, W.H., Duff, K.E., Yaffe, M.P., Pon, L.A., et al. (2009). Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810-1816. https://doi.org/10.2353/ajpath.2009.090219
  3. Area-Gomez, E., Del Carmen Lara Castillo, M., Tambini, M.D., Guardia-Laguarta, C., de Groof, A.J., Madra, M., Ikenouchi, J., Umeda, M., Bird, T.D., Sturley, S.L., et al. (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106-4123. https://doi.org/10.1038/emboj.2012.202
  4. Bernard-Marissal, N., Medard, J.J., Azzedine, H., and Chrast, R. (2015). Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 138, 875-890. https://doi.org/10.1093/brain/awv008
  5. Bernhard, W., and Rouiller, C. (1956). Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. J. Biophys. Biochem. Cytol. 2, 73-78. https://doi.org/10.1083/jcb.2.4.73
  6. Cali, T., Ottolini, D., Negro, A., and Brini, M. (2012). alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914-17929. https://doi.org/10.1074/jbc.M111.302794
  7. Cheung, K.H., Shineman, D., Muller, M., Cardenas, C., Mei, L., Yang, J., Tomita, T., Iwatsubo, T., Lee, V.M., and Foskett, J.K. (2008). Mechanism of $Ca^{2+}$ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58, 871-883. https://doi.org/10.1016/j.neuron.2008.04.015
  8. Chung, J., Torta, F., Masai, K., Lucast, L., Czapla, H., Tanner, L.B., Narayanaswamy, P., Wenk, M.R., Nakatsu, F., and De Camilli, P. (2015). PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428-432.
  9. Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. USA 101, 15927-15932. https://doi.org/10.1073/pnas.0407043101
  10. Colombini, M. (2012). VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta. 1818, 1457-1465. https://doi.org/10.1016/j.bbamem.2011.12.026
  11. Copeland, D.E., and Dalton, A. J. (1959). An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J. Biophys. Biochem. Cytol. 5, 393-396. https://doi.org/10.1083/jcb.5.3.393
  12. Csordas, G., Varnai, P., Golenar, T., Roy, S., Purkins, G., Schneider, T.G., Balla, T., and Hajnoczky, G. (2010). Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121-132. https://doi.org/10.1016/j.molcel.2010.06.029
  13. D'Angelo, G., Vicinanza, M., and De Matteis, M.A. (2008). Lipidtransfer proteins in biosynthetic pathways. Curr. Opin. Cell Biol. 20, 360-370. https://doi.org/10.1016/j.ceb.2008.03.013
  14. Das, A.M., and Harris, D.A. (1990). Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovasc. Res. 24, 411-417. https://doi.org/10.1093/cvr/24.5.411
  15. Davison, E.J., Pennington, K., Hung, C.-C., Peng, J., Rafiq, R., Ostareck-Lederer, A., Ostareck, D.H., Ardley, H.C., Banks, R.E., and Robinson, P.A. (2009). Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. PROTEOMICS 9, 4284-4297. https://doi.org/10.1002/pmic.200900126
  16. de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610. https://doi.org/10.1038/nature07534
  17. de Brito, O.M., and Scorrano, L. (2010). An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 29, 2715-2723. https://doi.org/10.1038/emboj.2010.177
  18. De Strooper, B. (2007). Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 8, 141-146. https://doi.org/10.1038/sj.embor.7400897
  19. De Vos, K.J., Morotz, G.M., Stoica, R., Tudor, E.L., Lau, K.F., Ackerley, S., Warley, A., Shaw, C.E., and Miller, C.C. (2012). VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299-1311. https://doi.org/10.1093/hmg/ddr559
  20. Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-879. https://doi.org/10.1038/nrm2275
  21. Eisenberg-Bord, M., Shai, N., Schuldiner, M., and Bohnert, M. (2016). A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395-409. https://doi.org/10.1016/j.devcel.2016.10.022
  22. Filadi, R., Greotti, E., Turacchio, G., Luini, A., Pozzan, T., and Pizzo, P. (2016). Presenilin 2 modulates endoplasmic reticulum-mitochodria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep. 15, 2226-2238. https://doi.org/10.1016/j.celrep.2016.05.013
  23. Galmes, R., Houcine, A., van Vliet, A.R., Agostinis, P., Jackson, C.L., and Giordano, F. (2016). ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep. 17, 800-810. https://doi.org/10.15252/embr.201541108
  24. Gomez-Suaga, P., Paillusson, S., Stoica, R., Noble, W., Hanger, D.P., and Miller, C.C.J. (2017). The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 27, 371-385. https://doi.org/10.1016/j.cub.2016.12.038
  25. Guardia-Laguarta, C., Area-Gomez, E., Rub, C., Liu, Y., Magrane, J., Becker, D., Voos, W., Schon, E.A., and Przedborski, S. (2014). alpha-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249-259. https://doi.org/10.1523/JNEUROSCI.2507-13.2014
  26. Hansford, R.G., and Zorov, D. (1998). Role of mitochondrial calcium transport in the control of substrate oxidation. Mol. Cell Biochem. 184, 359-369. https://doi.org/10.1023/A:1006893903113
  27. Harmon, M., Larkman, P., Hardingham, G., Jackson, M., and Skehel, P. (2017). A Bi-fluorescence complementation system to detect associations between the Endoplasmic reticulum and mitochondria. Sci. Rep. 7, 17467. https://doi.org/10.1038/s41598-017-17278-1
  28. Haworth, R.A., and Hunter, D.R. (1979). The $Ca^{2+}$-induced membrane transition in mitochondria: II. Nature of the $Ca^{2+}$ trigger site. Arch. Biochem. Biophys. 195, 460-467. https://doi.org/10.1016/0003-9861(79)90372-2
  29. Hayashi, T., Rizzuto, R., Hajnoczky, G., and Su, T.P. (2009). MAM: more than just a housekeeper. Trends Cell Biol. 19, 81-88. https://doi.org/10.1016/j.tcb.2008.12.002
  30. Hayashi, T., and Su, T.P. (2007). Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate $Ca(^{2+})$ signaling and cell survival. Cell 131, 596-610. https://doi.org/10.1016/j.cell.2007.08.036
  31. Hedskog, L., Pinho, C.M., Filadi, R., Ronnback, A., Hertwig, L., Wiehager, B., Larssen, P., Gellhaar, S., Sandebring, A., Westerlund, M., et al. (2013). Modulation of the endoplasmic reticulummitochondria interface in Alzheimer's disease and related models. Proc. Natl. Acad. Sci. USA 110, 7916-7921. https://doi.org/10.1073/pnas.1300677110
  32. Honrath, B., Metz, I., Bendridi, N., Rieusset, J., Culmsee, C., and Dolga, A.M. (2017). Glucose-regulated protein 75 determines ERmitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3, 17076. https://doi.org/10.1038/cddiscovery.2017.76
  33. Hoppe, U.C. (2010). Mitochondrial calcium channels. FEBS Lett. 584, 1975-1981. https://doi.org/10.1016/j.febslet.2010.04.017
  34. Iwasawa, R., Mahul-Mellier, A.L., Datler, C., Pazarentzos, E., and Grimm, S. (2011). Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556-568. https://doi.org/10.1038/emboj.2010.346
  35. Joseph, S.K., and Hajnoczky, G. (2007). IP3 receptors in cell survival and apoptosis: $Ca^{2+}$ release and beyond. Apoptosis 12, 951-968. https://doi.org/10.1007/s10495-007-0719-7
  36. Kanekura, K., Nishimoto, I., Aiso, S., and Matsuoka, M. (2006). Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J. Biol. Chem. 281, 30223-30233. https://doi.org/10.1074/jbc.M605049200
  37. Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477-481. https://doi.org/10.1126/science.1175088
  38. Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163. https://doi.org/10.1152/physrev.00013.2006
  39. Liang, J., Lyu, J., Zhao, M., Li, D., Zheng, M., Fang, Y., Zhao, F., Lou, J., Guo, C., Wang, L., et al. (2017). Tespa1 regulates T cell receptorinduced calcium signals by recruiting inositol 1,4,5-trisphosphate receptors. Nat. Commun. 8, 15732. https://doi.org/10.1038/ncomms15732
  40. Liou, J., Fivaz, M., Inoue, T., and Meyer, T. (2007). Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after $Ca^{2+}$ store depletion. Proc. Natl. Acad. Sci. USA 104, 9301-9306. https://doi.org/10.1073/pnas.0702866104
  41. Marchi, S., and Pinton, P. (2014). The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J. Physiol. 592, 829-839. https://doi.org/10.1113/jphysiol.2013.268235
  42. Maries, E., Dass, B., Collier, T.J., Kordower, J.H., and Steece-Collier, K. (2003). The role of alpha-synuclein in Parkinson's disease: insights from animal models. Nat. Rev. Neurosci. 4, 727-738. https://doi.org/10.1038/nrn1199
  43. Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221. https://doi.org/10.1083/jcb.200910140
  44. Matsuzaki, H., Fujimoto, T., Ota, T., Ogawa, M., Tsunoda, T., Doi, K., Hamabashiri, M., Tanaka, M., and Shirasawa, S. (2012). Tespa1 is a novel inositol 1,4,5-trisphosphate receptor binding protein in T and B lymphocytes. FEBS Open Bio. 2, 255-259. https://doi.org/10.1016/j.fob.2012.08.005
  45. Matsuzaki, H., Fujimoto, T., Tanaka, M., and Shirasawa, S. (2013). Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux. Biochem. Biophys. Res. Commun. 433, 322-326. https://doi.org/10.1016/j.bbrc.2013.02.099
  46. McCormack, J.G., and Denton, R.M. (1993). Mitochondrial $Ca^{2+}$ transport and the role of intramitochondrial $Ca^{2+}$ in the regulation of energy metabolism. Dev. Neurosci. 15, 165-173. https://doi.org/10.1159/000111332
  47. McLelland, G.L., Goiran, T., Yi, W., Dorval, G., Chen, C.X., Lauinger, N.D., Krahn, A.I., Valimehr, S., Rakovic, A., Rouiller, I., et al. (2018). Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife 7.
  48. Merkwirth, C., and Langer, T. (2008). Mitofusin 2 builds a bridge between ER and mitochondria. Cell 135, 1165-1167. https://doi.org/10.1016/j.cell.2008.12.005
  49. Mesmin, B., Bigay, J., Moser von Filseck, J., Lacas-Gervais, S., Drin, G., and Antonny, B. (2013). A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830-843. https://doi.org/10.1016/j.cell.2013.09.056
  50. Mikoshiba, K. (2007). IP3 receptor/$Ca^{2+}$ channel: from discovery to new signaling concepts. J. Neurochem. 102, 1426-1446. https://doi.org/10.1111/j.1471-4159.2007.04825.x
  51. Murphy, S.E., and Levine, T.P. (2016). VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim. Biophys. Acta. 1861, 952-961.
  52. Myhill, N., Lynes, E.M., Nanji, J.A., Blagoveshchenskaya, A.D., Fei, H., Simmen, K.C., Cooper, T.J., Thomas, G., Simmen, T., and Linstedt, A. (2008). The subcellular distribution of calnexin is mediated by PACS-2. Mol. Biol. Cell 19, 2777-2788. https://doi.org/10.1091/mbc.e07-10-0995
  53. Nguyen, M., Breckenridge, D.G., Ducret, A., and Shore, G.C. (2000). Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Biol. Cell 20, 6731-6740. https://doi.org/10.1128/MCB.20.18.6731-6740.2000
  54. Nishimura, A.L., Mitne-Neto, M., Silva, H.C., Richieri-Costa, A., Middleton, S., Cascio, D., Kok, F., Oliveira, J.R., Gillingwater, T., Webb, J., et al. (2004). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822-831. https://doi.org/10.1086/425287
  55. O'Brien, R.J., and Wong, P.C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annu. Rev. Neurosci. 34, 185-204. https://doi.org/10.1146/annurev-neuro-061010-113613
  56. Ottolini, D., Cali, T., Negro, A., and Brini, M. (2013). The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 22, 2152-2168. https://doi.org/10.1093/hmg/ddt068
  57. Patergnani, S., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., et al. (2011). Calcium signaling around mitochondria associated membranes (MAMs). Cell Commun. Signal. 9, 19. https://doi.org/10.1186/1478-811X-9-19
  58. Peretti, D., Dahan, N., Shimoni, E., Hirschberg, K., Lev, S., and Malhotra, V. (2008). Coordinated lipid transfer between the endoplasmic reticulum and the golgi complex requires the VAP proteins and is essential for golgi-mediated transport. Mol. Biol. Cell 19, 3871-3884. https://doi.org/10.1091/mbc.e08-05-0498
  59. Petronilli, V., Penzo, D., Scorrano, L., Bernardi, P., and Di Lisa, F. (2001). The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J. Biol. Chem. 276, 12030-12034. https://doi.org/10.1074/jbc.M010604200
  60. Prinz, W.A. (2014). Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205, 759-769. https://doi.org/10.1083/jcb.201401126
  61. Raiborg, C., Wenzel, E.M., Pedersen, N.M., Olsvik, H., Schink, K.O., Schultz, S.W., Vietri, M., Nisi, V., Bucci, C., Brech, A., et al. (2015). Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520, 234-238. https://doi.org/10.1038/nature14359
  62. Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Giorgi, C., Leo, S., Rimessi, A., Siviero, R., et al. (2009). $Ca(^{2+})$ transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta. 1787, 1342-1351. https://doi.org/10.1016/j.bbabio.2009.03.015
  63. Rostovtseva, T.K., Tan, W., and Colombini, M. (2005). On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 37, 129-142. https://doi.org/10.1007/s10863-005-6566-8
  64. Rowland, A.A., Chitwood, P.J., Phillips, M.J., and Voeltz, G.K. (2014). ER contact sites define the position and timing of endosome fission. Cell 159, 1027-1041. https://doi.org/10.1016/j.cell.2014.10.023
  65. Rowland, A.A., and Voeltz, G.K. (2012). Endoplasmic reticulummitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607-625. https://doi.org/10.1038/nrm3440
  66. Simmen, T., Aslan, J.E., Blagoveshchenskaya, A.D., Thomas, L., Wan, L., Xiang, Y., Feliciangeli, S.F., Hung, C.H., Crump, C.M., and Thomas, G. (2005). PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis. EMBO J. 24, 717-729. https://doi.org/10.1038/sj.emboj.7600559
  67. Stoica, R., De Vos, K.J., Paillusson, S., Mueller, S., Sancho, R.M., Lau, K.F., Vizcay-Barrena, G., Lin, W.L., Xu, Y.F., Lewis, J., et al. (2014). ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996. https://doi.org/10.1038/ncomms4996
  68. Stojanovski, D., Koutsopoulos, O.S., Okamoto, K., and Ryan, M.T. (2004). Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J. Cell Sci. 117, 1201-1210. https://doi.org/10.1242/jcs.01058
  69. Stone, S.J., and Vance, J.E. (2000). Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem. 275, 34534-34540. https://doi.org/10.1074/jbc.M002865200
  70. Su, T.P., Su, T.C., Nakamura, Y., and Tsai, S.Y. (2016). The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol. Sci. 37, 262-278. https://doi.org/10.1016/j.tips.2016.01.003
  71. Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial $Ca^{2+}$ channels. J. Cell Biol. 175, 901-911. https://doi.org/10.1083/jcb.200608073
  72. Van Laar, V.S., Roy, N., Liu, A., Rajprohat, S., Arnold, B., Dukes, A.A., Holbein, C.D., and Berman, S.B. (2015). Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol. Dis. 74, 180-193. https://doi.org/10.1016/j.nbd.2014.11.015
  73. Vance, J.E. (2014). MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta. 1841, 595-609. https://doi.org/10.1016/j.bbalip.2013.11.014
  74. Wadhwa, R., Taira, K., and Kaul, S.C. (2002). An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones. 7, 309. https://doi.org/10.1379/1466-1268(2002)007<0309:AHFCMM>2.0.CO;2
  75. Wakana, Y., Takai, S., Nakajima, K.i., Tani, K., Yamamoto, A., Watson, P., Stephens, D.J., Hauri, H.P., Tagaya, M., and Linstedt, A. (2008). Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated degradation. Mol. Biol. Cell 19, 1825-1836. https://doi.org/10.1091/mbc.e07-08-0781
  76. Wu, H., Carvalho, P., and Voeltz, G.K. (2018). Here, there, and everywhere: the importance of ER membrane contact sites. Science 361.
  77. Wu, W., Lin, C., Wu, K., Jiang, L., Wang, X., Li, W., Zhuang, H., Zhang, X., Chen, H., Li, S., et al. (2016). FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368-1384. https://doi.org/10.15252/embj.201593102
  78. Wu, Z., and Bowen, W.D. (2008). Role of sigma-1 receptor Cterminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J. Biol. Chem. 283, 28198-28215. https://doi.org/10.1074/jbc.M802099200
  79. Xu, H., Guan, N., Ren, Y.L., Wei, Q.J., Tao, Y.H., Yang, G.S., Liu, X.Y., Bu, D.F., Zhang, Y., and Zhu, S.N. (2018). IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 19, 140. https://doi.org/10.1186/s12882-018-0940-3
  80. Yu, C., Han, W., Shi, T., Lv, B., He, Q., Zhang, Y., Li, T., Zhang, Y., Song, Q., Wang, L., et al. (2008). PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cell Signal. 20, 2208-2220. https://doi.org/10.1016/j.cellsig.2008.07.020
  81. Zampese, E., Fasolato, C., Kipanyula, M.J., Bortolozzi, M., Pozzan, T., and Pizzo, P. (2011). Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and $Ca^{2+}$ cross-talk. Proc. Natl. Acad. Sci. USA 108, 2777-2782. https://doi.org/10.1073/pnas.1100735108

Cited by

  1. Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants vol.10, pp.None, 2018, https://doi.org/10.3389/fpls.2019.00749
  2. G-Protein-Coupled Receptor 120 Mediates DHA-Induced Apoptosis by Regulating IP3R, ROS and, ER Stress Levels in Cisplatin-Resistant Cancer Cells vol.42, pp.3, 2019, https://doi.org/10.14348/molcells.2019.2440
  3. Golgi stress response and organelle zones vol.593, pp.17, 2018, https://doi.org/10.1002/1873-3468.13554
  4. The Emerging Role of RHOT1 /Miro1 in the Pathogenesis of Parkinson's Disease vol.11, pp.None, 2018, https://doi.org/10.3389/fneur.2020.00587
  5. Mitochondrial Stress Responses and “Mito-Inflammation” in Cystic Fibrosis vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.581114
  6. Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease vol.11, pp.None, 2018, https://doi.org/10.3389/fphys.2020.00935
  7. STAT3 Localizes in Mitochondria-Associated ER Membranes Instead of in Mitochondria vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00274
  8. Mitochondria-Associated ER Membranes – The Origin Site of Autophagy vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00595
  9. When Friendship Turns Sour: Effective Communication Between Mitochondria and Intracellular Organelles in Parkinson's Disease vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.607392
  10. Highlighting Curcumin-Induced Crosstalk between Autophagy and Apoptosis as Supported by Its Specific Subcellular Localization vol.9, pp.2, 2018, https://doi.org/10.3390/cells9020361
  11. New horizons in mitochondrial contact site research vol.401, pp.6, 2018, https://doi.org/10.1515/hsz-2020-0133
  12. New horizons in mitochondrial contact site research vol.401, pp.6, 2018, https://doi.org/10.1515/hsz-2020-0133
  13. Mitochondria at the Crossroads of Physiology and Pathology vol.9, pp.6, 2018, https://doi.org/10.3390/jcm9061971
  14. Systemic effects of mitochondrial stress vol.21, pp.6, 2018, https://doi.org/10.15252/embr.202050094
  15. Mitochondria Associated Membranes (MAMs): Emerging Drug Targets for Diabetes vol.27, pp.20, 2020, https://doi.org/10.2174/0929867326666190212121248
  16. Miro: A molecular switch at the center of mitochondrial regulation vol.29, pp.6, 2018, https://doi.org/10.1002/pro.3839
  17. Altered Organelle Calcium Transport in Ovarian Physiology and Cancer vol.12, pp.8, 2018, https://doi.org/10.3390/cancers12082232
  18. Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Photocatalytic Toxicity vol.21, pp.17, 2018, https://doi.org/10.3390/ijms21176305
  19. PACS-2: A key regulator of mitochondria-associated membranes (MAMs) vol.160, pp.None, 2018, https://doi.org/10.1016/j.phrs.2020.105080
  20. Metabolic and epigenetic regulation of T-cell exhaustion vol.2, pp.10, 2018, https://doi.org/10.1038/s42255-020-00280-9
  21. The aerobic mitochondrial ATP synthesis from a comprehensive point of view vol.10, pp.10, 2018, https://doi.org/10.1098/rsob.200224
  22. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases vol.55, pp.None, 2018, https://doi.org/10.1016/j.mito.2020.09.004
  23. Hypoxia induces pulmonary artery smooth muscle dysfunction through mitochondrial fragmentation-mediated endoplasmic reticulum stress vol.12, pp.23, 2018, https://doi.org/10.18632/aging.103892
  24. Inflammation-Induced Protein Unfolding in Airway Smooth Muscle Triggers a Homeostatic Response in Mitochondria vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010363
  25. Metformin Reverses the Enhanced Myocardial SR/ER–Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.609493
  26. Perspectives on Organelle Interaction, Protein Dysregulation, and Cancer Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.613336
  27. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.774989
  28. ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk-Signaling Beyond (ER) Stress Response vol.11, pp.2, 2018, https://doi.org/10.3390/biom11020173
  29. Mitochondrial Targeting Involving Cholesterol-Rich Lipid Rafts in the Mechanism of Action of the Antitumor Ether Lipid and Alkylphospholipid Analog Edelfosine vol.13, pp.5, 2018, https://doi.org/10.3390/pharmaceutics13050763
  30. Oxidative Stress-Induced Unscheduled CDK1-Cyclin B1 Activity Impairs ER-Mitochondria-Mediated Bioenergetic Metabolism vol.10, pp.6, 2021, https://doi.org/10.3390/cells10061280
  31. A proximity-dependent biotinylation map of a human cell vol.595, pp.7865, 2018, https://doi.org/10.1038/s41586-021-03592-2
  32. Efficient extra‐mitochondrial aerobic ATP synthesis in neuronal membrane systems vol.99, pp.9, 2018, https://doi.org/10.1002/jnr.24865
  33. Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells vol.8, pp.9, 2021, https://doi.org/10.1098/rsos.210148
  34. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy vol.9, pp.9, 2018, https://doi.org/10.3390/biomedicines9091077
  35. Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis vol.10, pp.9, 2021, https://doi.org/10.3390/cells10092195
  36. Organelle-specific regulation of ferroptosis vol.28, pp.10, 2021, https://doi.org/10.1038/s41418-021-00859-z
  37. Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson’s Disease: The Role of Brain Renin Angiotensin System Components vol.11, pp.11, 2018, https://doi.org/10.3390/biom11111669
  38. Systems modeling predicts that mitochondria ER contact sites regulate the postsynaptic energy landscape vol.7, pp.1, 2018, https://doi.org/10.1038/s41540-021-00185-7