Fig 1. Composition of ER-mitochondria interface.
Table 1. List of protein components involved in MAM
References
- Al-Saif, A., Al-Mohanna, F., and Bohlega, S. (2011). A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 70, 913-919. https://doi.org/10.1002/ana.22534
- Area-Gomez, E., de Groof, A.J., Boldogh, I., Bird, T.D., Gibson, G.E., Koehler, C.M., Yu, W.H., Duff, K.E., Yaffe, M.P., Pon, L.A., et al. (2009). Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810-1816. https://doi.org/10.2353/ajpath.2009.090219
- Area-Gomez, E., Del Carmen Lara Castillo, M., Tambini, M.D., Guardia-Laguarta, C., de Groof, A.J., Madra, M., Ikenouchi, J., Umeda, M., Bird, T.D., Sturley, S.L., et al. (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106-4123. https://doi.org/10.1038/emboj.2012.202
- Bernard-Marissal, N., Medard, J.J., Azzedine, H., and Chrast, R. (2015). Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 138, 875-890. https://doi.org/10.1093/brain/awv008
- Bernhard, W., and Rouiller, C. (1956). Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. J. Biophys. Biochem. Cytol. 2, 73-78. https://doi.org/10.1083/jcb.2.4.73
- Cali, T., Ottolini, D., Negro, A., and Brini, M. (2012). alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914-17929. https://doi.org/10.1074/jbc.M111.302794
-
Cheung, K.H., Shineman, D., Muller, M., Cardenas, C., Mei, L., Yang, J., Tomita, T., Iwatsubo, T., Lee, V.M., and Foskett, J.K. (2008). Mechanism of
$Ca^{2+}$ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58, 871-883. https://doi.org/10.1016/j.neuron.2008.04.015 - Chung, J., Torta, F., Masai, K., Lucast, L., Czapla, H., Tanner, L.B., Narayanaswamy, P., Wenk, M.R., Nakatsu, F., and De Camilli, P. (2015). PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428-432.
- Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. USA 101, 15927-15932. https://doi.org/10.1073/pnas.0407043101
- Colombini, M. (2012). VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta. 1818, 1457-1465. https://doi.org/10.1016/j.bbamem.2011.12.026
- Copeland, D.E., and Dalton, A. J. (1959). An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J. Biophys. Biochem. Cytol. 5, 393-396. https://doi.org/10.1083/jcb.5.3.393
- Csordas, G., Varnai, P., Golenar, T., Roy, S., Purkins, G., Schneider, T.G., Balla, T., and Hajnoczky, G. (2010). Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121-132. https://doi.org/10.1016/j.molcel.2010.06.029
- D'Angelo, G., Vicinanza, M., and De Matteis, M.A. (2008). Lipidtransfer proteins in biosynthetic pathways. Curr. Opin. Cell Biol. 20, 360-370. https://doi.org/10.1016/j.ceb.2008.03.013
- Das, A.M., and Harris, D.A. (1990). Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovasc. Res. 24, 411-417. https://doi.org/10.1093/cvr/24.5.411
- Davison, E.J., Pennington, K., Hung, C.-C., Peng, J., Rafiq, R., Ostareck-Lederer, A., Ostareck, D.H., Ardley, H.C., Banks, R.E., and Robinson, P.A. (2009). Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. PROTEOMICS 9, 4284-4297. https://doi.org/10.1002/pmic.200900126
- de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610. https://doi.org/10.1038/nature07534
- de Brito, O.M., and Scorrano, L. (2010). An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 29, 2715-2723. https://doi.org/10.1038/emboj.2010.177
- De Strooper, B. (2007). Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 8, 141-146. https://doi.org/10.1038/sj.embor.7400897
- De Vos, K.J., Morotz, G.M., Stoica, R., Tudor, E.L., Lau, K.F., Ackerley, S., Warley, A., Shaw, C.E., and Miller, C.C. (2012). VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299-1311. https://doi.org/10.1093/hmg/ddr559
- Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-879. https://doi.org/10.1038/nrm2275
- Eisenberg-Bord, M., Shai, N., Schuldiner, M., and Bohnert, M. (2016). A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395-409. https://doi.org/10.1016/j.devcel.2016.10.022
- Filadi, R., Greotti, E., Turacchio, G., Luini, A., Pozzan, T., and Pizzo, P. (2016). Presenilin 2 modulates endoplasmic reticulum-mitochodria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep. 15, 2226-2238. https://doi.org/10.1016/j.celrep.2016.05.013
- Galmes, R., Houcine, A., van Vliet, A.R., Agostinis, P., Jackson, C.L., and Giordano, F. (2016). ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep. 17, 800-810. https://doi.org/10.15252/embr.201541108
- Gomez-Suaga, P., Paillusson, S., Stoica, R., Noble, W., Hanger, D.P., and Miller, C.C.J. (2017). The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 27, 371-385. https://doi.org/10.1016/j.cub.2016.12.038
- Guardia-Laguarta, C., Area-Gomez, E., Rub, C., Liu, Y., Magrane, J., Becker, D., Voos, W., Schon, E.A., and Przedborski, S. (2014). alpha-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249-259. https://doi.org/10.1523/JNEUROSCI.2507-13.2014
- Hansford, R.G., and Zorov, D. (1998). Role of mitochondrial calcium transport in the control of substrate oxidation. Mol. Cell Biochem. 184, 359-369. https://doi.org/10.1023/A:1006893903113
- Harmon, M., Larkman, P., Hardingham, G., Jackson, M., and Skehel, P. (2017). A Bi-fluorescence complementation system to detect associations between the Endoplasmic reticulum and mitochondria. Sci. Rep. 7, 17467. https://doi.org/10.1038/s41598-017-17278-1
-
Haworth, R.A., and Hunter, D.R. (1979). The
$Ca^{2+}$ -induced membrane transition in mitochondria: II. Nature of the$Ca^{2+}$ trigger site. Arch. Biochem. Biophys. 195, 460-467. https://doi.org/10.1016/0003-9861(79)90372-2 - Hayashi, T., Rizzuto, R., Hajnoczky, G., and Su, T.P. (2009). MAM: more than just a housekeeper. Trends Cell Biol. 19, 81-88. https://doi.org/10.1016/j.tcb.2008.12.002
-
Hayashi, T., and Su, T.P. (2007). Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate
$Ca(^{2+})$ signaling and cell survival. Cell 131, 596-610. https://doi.org/10.1016/j.cell.2007.08.036 - Hedskog, L., Pinho, C.M., Filadi, R., Ronnback, A., Hertwig, L., Wiehager, B., Larssen, P., Gellhaar, S., Sandebring, A., Westerlund, M., et al. (2013). Modulation of the endoplasmic reticulummitochondria interface in Alzheimer's disease and related models. Proc. Natl. Acad. Sci. USA 110, 7916-7921. https://doi.org/10.1073/pnas.1300677110
- Honrath, B., Metz, I., Bendridi, N., Rieusset, J., Culmsee, C., and Dolga, A.M. (2017). Glucose-regulated protein 75 determines ERmitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3, 17076. https://doi.org/10.1038/cddiscovery.2017.76
- Hoppe, U.C. (2010). Mitochondrial calcium channels. FEBS Lett. 584, 1975-1981. https://doi.org/10.1016/j.febslet.2010.04.017
- Iwasawa, R., Mahul-Mellier, A.L., Datler, C., Pazarentzos, E., and Grimm, S. (2011). Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556-568. https://doi.org/10.1038/emboj.2010.346
-
Joseph, S.K., and Hajnoczky, G. (2007). IP3 receptors in cell survival and apoptosis:
$Ca^{2+}$ release and beyond. Apoptosis 12, 951-968. https://doi.org/10.1007/s10495-007-0719-7 - Kanekura, K., Nishimoto, I., Aiso, S., and Matsuoka, M. (2006). Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J. Biol. Chem. 281, 30223-30233. https://doi.org/10.1074/jbc.M605049200
- Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477-481. https://doi.org/10.1126/science.1175088
- Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163. https://doi.org/10.1152/physrev.00013.2006
- Liang, J., Lyu, J., Zhao, M., Li, D., Zheng, M., Fang, Y., Zhao, F., Lou, J., Guo, C., Wang, L., et al. (2017). Tespa1 regulates T cell receptorinduced calcium signals by recruiting inositol 1,4,5-trisphosphate receptors. Nat. Commun. 8, 15732. https://doi.org/10.1038/ncomms15732
-
Liou, J., Fivaz, M., Inoue, T., and Meyer, T. (2007). Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after
$Ca^{2+}$ store depletion. Proc. Natl. Acad. Sci. USA 104, 9301-9306. https://doi.org/10.1073/pnas.0702866104 - Marchi, S., and Pinton, P. (2014). The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J. Physiol. 592, 829-839. https://doi.org/10.1113/jphysiol.2013.268235
- Maries, E., Dass, B., Collier, T.J., Kordower, J.H., and Steece-Collier, K. (2003). The role of alpha-synuclein in Parkinson's disease: insights from animal models. Nat. Rev. Neurosci. 4, 727-738. https://doi.org/10.1038/nrn1199
- Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221. https://doi.org/10.1083/jcb.200910140
- Matsuzaki, H., Fujimoto, T., Ota, T., Ogawa, M., Tsunoda, T., Doi, K., Hamabashiri, M., Tanaka, M., and Shirasawa, S. (2012). Tespa1 is a novel inositol 1,4,5-trisphosphate receptor binding protein in T and B lymphocytes. FEBS Open Bio. 2, 255-259. https://doi.org/10.1016/j.fob.2012.08.005
- Matsuzaki, H., Fujimoto, T., Tanaka, M., and Shirasawa, S. (2013). Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux. Biochem. Biophys. Res. Commun. 433, 322-326. https://doi.org/10.1016/j.bbrc.2013.02.099
-
McCormack, J.G., and Denton, R.M. (1993). Mitochondrial
$Ca^{2+}$ transport and the role of intramitochondrial$Ca^{2+}$ in the regulation of energy metabolism. Dev. Neurosci. 15, 165-173. https://doi.org/10.1159/000111332 - McLelland, G.L., Goiran, T., Yi, W., Dorval, G., Chen, C.X., Lauinger, N.D., Krahn, A.I., Valimehr, S., Rakovic, A., Rouiller, I., et al. (2018). Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife 7.
- Merkwirth, C., and Langer, T. (2008). Mitofusin 2 builds a bridge between ER and mitochondria. Cell 135, 1165-1167. https://doi.org/10.1016/j.cell.2008.12.005
- Mesmin, B., Bigay, J., Moser von Filseck, J., Lacas-Gervais, S., Drin, G., and Antonny, B. (2013). A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830-843. https://doi.org/10.1016/j.cell.2013.09.056
-
Mikoshiba, K. (2007). IP3 receptor/
$Ca^{2+}$ channel: from discovery to new signaling concepts. J. Neurochem. 102, 1426-1446. https://doi.org/10.1111/j.1471-4159.2007.04825.x - Murphy, S.E., and Levine, T.P. (2016). VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim. Biophys. Acta. 1861, 952-961.
- Myhill, N., Lynes, E.M., Nanji, J.A., Blagoveshchenskaya, A.D., Fei, H., Simmen, K.C., Cooper, T.J., Thomas, G., Simmen, T., and Linstedt, A. (2008). The subcellular distribution of calnexin is mediated by PACS-2. Mol. Biol. Cell 19, 2777-2788. https://doi.org/10.1091/mbc.e07-10-0995
- Nguyen, M., Breckenridge, D.G., Ducret, A., and Shore, G.C. (2000). Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Biol. Cell 20, 6731-6740. https://doi.org/10.1128/MCB.20.18.6731-6740.2000
- Nishimura, A.L., Mitne-Neto, M., Silva, H.C., Richieri-Costa, A., Middleton, S., Cascio, D., Kok, F., Oliveira, J.R., Gillingwater, T., Webb, J., et al. (2004). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822-831. https://doi.org/10.1086/425287
- O'Brien, R.J., and Wong, P.C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annu. Rev. Neurosci. 34, 185-204. https://doi.org/10.1146/annurev-neuro-061010-113613
- Ottolini, D., Cali, T., Negro, A., and Brini, M. (2013). The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 22, 2152-2168. https://doi.org/10.1093/hmg/ddt068
- Patergnani, S., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., et al. (2011). Calcium signaling around mitochondria associated membranes (MAMs). Cell Commun. Signal. 9, 19. https://doi.org/10.1186/1478-811X-9-19
- Peretti, D., Dahan, N., Shimoni, E., Hirschberg, K., Lev, S., and Malhotra, V. (2008). Coordinated lipid transfer between the endoplasmic reticulum and the golgi complex requires the VAP proteins and is essential for golgi-mediated transport. Mol. Biol. Cell 19, 3871-3884. https://doi.org/10.1091/mbc.e08-05-0498
- Petronilli, V., Penzo, D., Scorrano, L., Bernardi, P., and Di Lisa, F. (2001). The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J. Biol. Chem. 276, 12030-12034. https://doi.org/10.1074/jbc.M010604200
- Prinz, W.A. (2014). Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205, 759-769. https://doi.org/10.1083/jcb.201401126
- Raiborg, C., Wenzel, E.M., Pedersen, N.M., Olsvik, H., Schink, K.O., Schultz, S.W., Vietri, M., Nisi, V., Bucci, C., Brech, A., et al. (2015). Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520, 234-238. https://doi.org/10.1038/nature14359
-
Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Giorgi, C., Leo, S., Rimessi, A., Siviero, R., et al. (2009).
$Ca(^{2+})$ transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta. 1787, 1342-1351. https://doi.org/10.1016/j.bbabio.2009.03.015 - Rostovtseva, T.K., Tan, W., and Colombini, M. (2005). On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 37, 129-142. https://doi.org/10.1007/s10863-005-6566-8
- Rowland, A.A., Chitwood, P.J., Phillips, M.J., and Voeltz, G.K. (2014). ER contact sites define the position and timing of endosome fission. Cell 159, 1027-1041. https://doi.org/10.1016/j.cell.2014.10.023
- Rowland, A.A., and Voeltz, G.K. (2012). Endoplasmic reticulummitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607-625. https://doi.org/10.1038/nrm3440
- Simmen, T., Aslan, J.E., Blagoveshchenskaya, A.D., Thomas, L., Wan, L., Xiang, Y., Feliciangeli, S.F., Hung, C.H., Crump, C.M., and Thomas, G. (2005). PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis. EMBO J. 24, 717-729. https://doi.org/10.1038/sj.emboj.7600559
- Stoica, R., De Vos, K.J., Paillusson, S., Mueller, S., Sancho, R.M., Lau, K.F., Vizcay-Barrena, G., Lin, W.L., Xu, Y.F., Lewis, J., et al. (2014). ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996. https://doi.org/10.1038/ncomms4996
- Stojanovski, D., Koutsopoulos, O.S., Okamoto, K., and Ryan, M.T. (2004). Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J. Cell Sci. 117, 1201-1210. https://doi.org/10.1242/jcs.01058
- Stone, S.J., and Vance, J.E. (2000). Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem. 275, 34534-34540. https://doi.org/10.1074/jbc.M002865200
- Su, T.P., Su, T.C., Nakamura, Y., and Tsai, S.Y. (2016). The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol. Sci. 37, 262-278. https://doi.org/10.1016/j.tips.2016.01.003
-
Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial
$Ca^{2+}$ channels. J. Cell Biol. 175, 901-911. https://doi.org/10.1083/jcb.200608073 - Van Laar, V.S., Roy, N., Liu, A., Rajprohat, S., Arnold, B., Dukes, A.A., Holbein, C.D., and Berman, S.B. (2015). Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol. Dis. 74, 180-193. https://doi.org/10.1016/j.nbd.2014.11.015
- Vance, J.E. (2014). MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta. 1841, 595-609. https://doi.org/10.1016/j.bbalip.2013.11.014
- Wadhwa, R., Taira, K., and Kaul, S.C. (2002). An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones. 7, 309. https://doi.org/10.1379/1466-1268(2002)007<0309:AHFCMM>2.0.CO;2
- Wakana, Y., Takai, S., Nakajima, K.i., Tani, K., Yamamoto, A., Watson, P., Stephens, D.J., Hauri, H.P., Tagaya, M., and Linstedt, A. (2008). Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated degradation. Mol. Biol. Cell 19, 1825-1836. https://doi.org/10.1091/mbc.e07-08-0781
- Wu, H., Carvalho, P., and Voeltz, G.K. (2018). Here, there, and everywhere: the importance of ER membrane contact sites. Science 361.
- Wu, W., Lin, C., Wu, K., Jiang, L., Wang, X., Li, W., Zhuang, H., Zhang, X., Chen, H., Li, S., et al. (2016). FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368-1384. https://doi.org/10.15252/embj.201593102
- Wu, Z., and Bowen, W.D. (2008). Role of sigma-1 receptor Cterminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J. Biol. Chem. 283, 28198-28215. https://doi.org/10.1074/jbc.M802099200
- Xu, H., Guan, N., Ren, Y.L., Wei, Q.J., Tao, Y.H., Yang, G.S., Liu, X.Y., Bu, D.F., Zhang, Y., and Zhu, S.N. (2018). IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 19, 140. https://doi.org/10.1186/s12882-018-0940-3
- Yu, C., Han, W., Shi, T., Lv, B., He, Q., Zhang, Y., Li, T., Zhang, Y., Song, Q., Wang, L., et al. (2008). PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cell Signal. 20, 2208-2220. https://doi.org/10.1016/j.cellsig.2008.07.020
-
Zampese, E., Fasolato, C., Kipanyula, M.J., Bortolozzi, M., Pozzan, T., and Pizzo, P. (2011). Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and
$Ca^{2+}$ cross-talk. Proc. Natl. Acad. Sci. USA 108, 2777-2782. https://doi.org/10.1073/pnas.1100735108
Cited by
- Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants vol.10, pp.None, 2018, https://doi.org/10.3389/fpls.2019.00749
- G-Protein-Coupled Receptor 120 Mediates DHA-Induced Apoptosis by Regulating IP3R, ROS and, ER Stress Levels in Cisplatin-Resistant Cancer Cells vol.42, pp.3, 2019, https://doi.org/10.14348/molcells.2019.2440
- Golgi stress response and organelle zones vol.593, pp.17, 2018, https://doi.org/10.1002/1873-3468.13554
- The Emerging Role of RHOT1 /Miro1 in the Pathogenesis of Parkinson's Disease vol.11, pp.None, 2018, https://doi.org/10.3389/fneur.2020.00587
- Mitochondrial Stress Responses and “Mito-Inflammation” in Cystic Fibrosis vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.581114
- Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease vol.11, pp.None, 2018, https://doi.org/10.3389/fphys.2020.00935
- STAT3 Localizes in Mitochondria-Associated ER Membranes Instead of in Mitochondria vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00274
- Mitochondria-Associated ER Membranes – The Origin Site of Autophagy vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00595
- When Friendship Turns Sour: Effective Communication Between Mitochondria and Intracellular Organelles in Parkinson's Disease vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.607392
- Highlighting Curcumin-Induced Crosstalk between Autophagy and Apoptosis as Supported by Its Specific Subcellular Localization vol.9, pp.2, 2018, https://doi.org/10.3390/cells9020361
- New horizons in mitochondrial contact site research vol.401, pp.6, 2018, https://doi.org/10.1515/hsz-2020-0133
- New horizons in mitochondrial contact site research vol.401, pp.6, 2018, https://doi.org/10.1515/hsz-2020-0133
- Mitochondria at the Crossroads of Physiology and Pathology vol.9, pp.6, 2018, https://doi.org/10.3390/jcm9061971
- Systemic effects of mitochondrial stress vol.21, pp.6, 2018, https://doi.org/10.15252/embr.202050094
- Mitochondria Associated Membranes (MAMs): Emerging Drug Targets for Diabetes vol.27, pp.20, 2020, https://doi.org/10.2174/0929867326666190212121248
- Miro: A molecular switch at the center of mitochondrial regulation vol.29, pp.6, 2018, https://doi.org/10.1002/pro.3839
- Altered Organelle Calcium Transport in Ovarian Physiology and Cancer vol.12, pp.8, 2018, https://doi.org/10.3390/cancers12082232
- Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Photocatalytic Toxicity vol.21, pp.17, 2018, https://doi.org/10.3390/ijms21176305
- PACS-2: A key regulator of mitochondria-associated membranes (MAMs) vol.160, pp.None, 2018, https://doi.org/10.1016/j.phrs.2020.105080
- Metabolic and epigenetic regulation of T-cell exhaustion vol.2, pp.10, 2018, https://doi.org/10.1038/s42255-020-00280-9
- The aerobic mitochondrial ATP synthesis from a comprehensive point of view vol.10, pp.10, 2018, https://doi.org/10.1098/rsob.200224
- A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases vol.55, pp.None, 2018, https://doi.org/10.1016/j.mito.2020.09.004
- Hypoxia induces pulmonary artery smooth muscle dysfunction through mitochondrial fragmentation-mediated endoplasmic reticulum stress vol.12, pp.23, 2018, https://doi.org/10.18632/aging.103892
- Inflammation-Induced Protein Unfolding in Airway Smooth Muscle Triggers a Homeostatic Response in Mitochondria vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010363
- Metformin Reverses the Enhanced Myocardial SR/ER–Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.609493
- Perspectives on Organelle Interaction, Protein Dysregulation, and Cancer Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.613336
- Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.774989
- ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk-Signaling Beyond (ER) Stress Response vol.11, pp.2, 2018, https://doi.org/10.3390/biom11020173
- Mitochondrial Targeting Involving Cholesterol-Rich Lipid Rafts in the Mechanism of Action of the Antitumor Ether Lipid and Alkylphospholipid Analog Edelfosine vol.13, pp.5, 2018, https://doi.org/10.3390/pharmaceutics13050763
- Oxidative Stress-Induced Unscheduled CDK1-Cyclin B1 Activity Impairs ER-Mitochondria-Mediated Bioenergetic Metabolism vol.10, pp.6, 2021, https://doi.org/10.3390/cells10061280
- A proximity-dependent biotinylation map of a human cell vol.595, pp.7865, 2018, https://doi.org/10.1038/s41586-021-03592-2
- Efficient extra‐mitochondrial aerobic ATP synthesis in neuronal membrane systems vol.99, pp.9, 2018, https://doi.org/10.1002/jnr.24865
- Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells vol.8, pp.9, 2021, https://doi.org/10.1098/rsos.210148
- Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy vol.9, pp.9, 2018, https://doi.org/10.3390/biomedicines9091077
- Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis vol.10, pp.9, 2021, https://doi.org/10.3390/cells10092195
- Organelle-specific regulation of ferroptosis vol.28, pp.10, 2021, https://doi.org/10.1038/s41418-021-00859-z
- Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson’s Disease: The Role of Brain Renin Angiotensin System Components vol.11, pp.11, 2018, https://doi.org/10.3390/biom11111669
- Systems modeling predicts that mitochondria ER contact sites regulate the postsynaptic energy landscape vol.7, pp.1, 2018, https://doi.org/10.1038/s41540-021-00185-7