• Title/Summary/Keyword: Holonomic System

Search Result 45, Processing Time 0.026 seconds

A study on the computer simulation model of the NONHOLONOMIC rotating motion system about the closed system (폐쇄된 계에서 비 흘로노믹 (NONHOLONOMIC) 회전 운동 SYSTEM에 대한 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.5
    • /
    • pp.221-226
    • /
    • 2009
  • The closed system's internal rigid body particle rotation motion can be distinguished by a main body that becomes the core of the rotation and the particles that are subjected to the rotation. The instance of particles becoming bounded to the main body as a holonomic system, has till now, been well defined and formulated in the study of Kinetics, and the structure of the formulas relate well to reality. However, when the structure is non-holonomic it deviates from these existing equations. The purpose of this research is to categorize the differences between a holonomic system and a non-holonomic system when rotating, through devices. With a special emphasis on the real phenomenon of the non-holonomic system which will be formulated in the form of a model or computer simulation. With these formulas, the center of mass shift in a closed rotating motion system and confined motion of external friction will be adequately expressed, so that it may be applied to computer graphics motions methods.

  • PDF

Development of Holonomic Drive Technology with Variable Manipulability (조종성이 가변 가능한 홀로노믹 구동 기술 개발)

  • Lee, Ho-Hyoung;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.471-479
    • /
    • 2010
  • A holonomic drive can provide rotational and translational acceleration simultaneously in any direction. For this reason the holonomic drive technology is very desirable in creating motion for any mobile platform and has many promising mobility applications in the field of robotics and automation where manipulability is critical issue especially when the mobile system is operated in obstacle prone environment. In this paper a pragmatic methodology for realizing a holonomic drive system using multiple servo-casters is presented. The steering and driving of each servo-caster is controlled such that they are coordinated with the motions of other servo-casters in order to realize holonomic motion. This paper also proposes algorithms for varying manipulability as operation situation demands.

Attitude control of space robots with a manipulator using time-state control form

  • Sampei, Mitsuji;Kiyota, Hiromitsu;Ishikawa, Masato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.468-471
    • /
    • 1995
  • In this paper, we propose a new strategy for a space robot to control its attitude. A space robot is an example of a class of non-holonomic systems, a system of which cannot be stabilized into its equilibria with continuous static state feedbacks even in the case that the system is, in some sense, controllable. Thus, we cannot design stabilizing controllers for space robots using conventional control theories. The strategy presented here transforms the non-holonomic system into a time-state control form, and allows us to make the state of the original system any desired one. In the stabilization, any conventional control theory can be applied. For simplicity, a space robot with a two-link manipulator is considered, and a simulated motion of the controlled system is shown.

  • PDF

Dynamics and Control of Holonomic & Nonholonomic System Using GIM (GIM을 사용한 Holonomic과 Nonholonomic 시스템의 동적 거동 및 제어)

  • 은희창;정진형
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.653-660
    • /
    • 1996
  • There have been many studies to control holonomic and/or nonholonomic systems, and nonlinear control problems. However, their approaches require complicated intermediate procedures. Using the Generalized Inverse Method derived by Udwadia and Kalaba in 1992, this study provides two applications to the control of holonomically and/or nonholonomically constrained systems. These applications illustrate the ease with which the equation by the Generalized Inverse Method can be utilized for the purpose of (a) control of highly nonlinear systems without depending on any linearization, (b) maintaining precision tracking motions with the presence of known disturbances, and (c) explicit determination of control forces under the circumstances (a) and (b).

  • PDF

Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle

  • Schwab A. L.;Meijaard J. P.;Papadopoulos J. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.292-304
    • /
    • 2005
  • In this paper we present the linearized equations of motion for a bicycle as a benchmark. The results obtained by pencil-and-paper and two programs are compared. The bicycle model we consider here consists of four rigid bodies, viz. a rear frame, a front frame being the front fork and handlebar assembly, a rear wheel and a front wheel, which are connected by revolute joints. The contact between the knife-edge wheels and the flat level surface is modelled by holonomic constraints in the normal direction and by non-holonomic constraints in the longitudinal and lateral direction. The rider is rigidly attached to the rear frame with hands free from the handlebar. This system has three degrees of freedom, the roll, the steer, and the forward speed. For the benchmark we consider the linearized equations for small perturbations of the upright steady forward motion. The entries of the matrices of these equations form the basis for comparison. Three diffrent kinds of methods to obtain the results are compared : pencil-and-paper, the numeric multibody dynamics program SPACAR, and the symbolic software system Auto Sim. Because the results of the three methods are the same within the machine round-off error, we assume that the results are correct and can be used as a bicycle dynamics benchmark.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

Development of a New Navigation Technology for Mobile Robot Based on Sonar Sensors (초음파센서 기반 이동로봇의 새로운 네비게이션 기술 개발)

  • Nguyen, Van-Quyet;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.664-674
    • /
    • 2009
  • This paper presents the theoretical development of a complete navigation problem of a non-holonomic mobile robot by using sonar sensors. To solve this problem, a new method to compute a fuzzy perception of the environment is presented, dealing with the uncertainties and imprecision from the sensory system and taking into account nonholonomic constraints of the robot. Fuzzy perception, fuzzy controller are applied, both in the design of each reactive behavior and solving the problem of behavior combination, to implement a fuzzy behavior-based control architecture. Different experiments in populated environments have proved to be very successful. Our method is able to guide the mobile robot named KUM-Robo safety and efficiently during long experimental time.

  • PDF

Backward Path Tracking Control of a Trailer Type Vehicle Using a RCGA Based Parameter Estimation (RCGA 기반의 파라미터 추정 기법을 이용한 트레일러형 차량의 후방경로 추종제어)

  • 위용욱;하윤수;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.124-130
    • /
    • 2001
  • This paper presents a methodology on automation of a trailer type vehicle which consists of two parts: a tractor and a trailer. Backward moving and parking control is very important to automate this type of vehicle. It is difficult to control the motion such a trailer vehicle whose dynamics in non-holonomic. Therefore, in this paper, the modeling and parameter estimation of the system using a RCGA(real-coded genetic algorithm) is proposed and a backward path tracking control algorithm is then obtained. The simulation results verify the effectiveness of the proposed method.

  • PDF

A Study on the Backward Path Tracking Control of the Trailer Type Vehicle (트레일러형 차량의 후방경로추종제어에 관한 연구)

  • 백운학
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.11-15
    • /
    • 2000
  • This paper provides a basic study on automatic of a trailer type vehicle which consists of two parts such as a tractor and a trailer Backward moving and parking control is very important to automate this type of vehicle. However it is very difficult to control such their motion since a trailer type vehicle is a non-holonomic system. Therefore in this paper we propose the backward path tracking control algorithm for a trailer type vehicle. And also this paper presents the results of simulation to verify the effectiveness of the proposed control algorithm.

  • PDF

Ackermann Geometry-based Analysis of NHC Satisfaction of INS for Vehicular Navigation according to IMU Location

  • Cho, Seong Yun;Chae, Myeong Seok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, we analyze the Non-Holonomic Constraint (NHC) satisfaction of Inertial Navigation System (INS) for vehicular navigation according to Inertial Measurement Unit (IMU) location. In INS-based vehicle navigation, NHC information is widely used to improve INS performance. That is, the error of the INS can be compensated under the condition that the velocity in the body coordinate system of the vehicle occurs only in the forward direction. In this case, the condition that the vehicle's wheels do not slip and the vehicle rotates with the center of the IMU must be satisfied. However, the rotation of the vehicle is rotated by the steering wheel which is controlled based on the Ackermann geometry, where the center of rotation of the vehicle exists outside the vehicle. Due to this, a phenomenon occurs that the NHC is not satisfied depending on the mounting position of the IMU. In this paper, we analyze this problem based on Ackermann geometry and prove the analysis result based on simulation.